Browsing through High Quality Document Images with DjVu

Patrick Haffner, Léon Bottou, Paul G. Howard,
Patrice Simard, Yoshua Bengio and Yann Le Cun

AT&T Labs-Research
100 Schultz Drive
Red Bank, NJ 07701-7033
{haffner,leonb,pgh,patrice,yoshua,yann } @research.att.com

Abstract
We present a new image compression technique
called “DjVu ” that is specifically geared towards the
compression of high-resolution, high-quality images of
scanned documents in color. With DjVu , any screen
connected to the Internet can access and display im-
ages of scanned pages while faithfully reproducing the
font, color, drawing, pictures, and paper texture. A
typical magazine page in color at 300dpi can be com-
pressed down to between 40 to 60 KB, approximately
5 to 10 times better than JPEG for a similar level of
subjective quality. BEW documents are typically 15
to 30 KBytes at 300dpt, or 4 to 8 times better than
CCITT-G/. A real-time, memory efficient version of
the decoder was implemented, and is available as a
plug-in for popular web browsers.
Keywords: digital libraries, image compression, im-
age segmentation, arithmetic coding, wavelet coding,
JBIG2

1 Introduction

As electronic storage, retrieval, and distribution of
documents becomes faster and cheaper, libraries are
becoming increasingly digital. Recent studies have
shown that it is already less costly to store documents
digitally than to provide for buildings and shelves to
house them [2]. Unfortunately, the difficulty of con-
verting existing documents to electronic form is a ma-
jor obstacle to the development of digital libraries.

Existing documents are usually re-typed and con-
verted to HTML or Adobe’s PDF format, a tedious
and expensive task sometimes facilitated by the use
of Optical Character Recognition (OCR). While the
accuracy of OCR systems has been steadily improv-
ing over the last decade, they are still far from being
able to translate faithfully a scanned document into a
computer-readable format without extensive manual
correction.

Even if pictures and drawings are scanned and in-
tegrated into the web page, much of the visual aspect
of the original document is likely to be lost. Visual
details, including font irregularities, paper color, and
paper texture, are particularly important for histori-
cal documents, and may also be crucial in documents
with tables, mathematical or chemical formulae, and
handwritten text.

A simple alternative would be to scan the original
page and simply compress the image as a JPEG or
GIF file. Unfortunately, those files tend to be quite
large if one wants to preserve the readability of the
text. Compressed with JPEG, a color image of a
typical magazine page scanned at 100dpi (dots per
inch) would be around 100 KBytes to 200 KBytes,
and would be barely readable. The same page at
300dpi would be of acceptable quality, but would oc-
cupy around 500 KBytes. Even worse, not only would
the decompressed image fill up the entire memory of
an average PC, but only a small portion of it would
be visible on the screen at once. A just-readable black
and white page in GIF would be around 50 to 100
KBytes.

To summarize the current situation, it is clear that
the complete digitization of the world’s major library
collections is only a matter of time. In this context, it
seems paradoxical that there exist no universal stan-
dard for efficient storage, retrieval, and transmission
of high-quality document images in color.

To make remote access to digital libraries a pleasant
experience, pages must appear on the screen after only
a few seconds delay. Assuming a 56 kilobits per second
(kbps) connection, this means that the most relevant
parts of the document (the text) must be compressed
down to about 20 to 30 KBytes. With a progressive
compression technique, the text would be transmitted
and displayed first. Then the pictures, drawings, and

backgrounds would be transmitted and displayed, im-
proving the quality of the image as more bits arrive.
The overall size of the file should be on the order of 50
to 100 KBytes to keep the overall transmission time
and storage requirements within reasonable bounds.

Another peculiarity of document images, their large
size, makes current image compression techniques in-
appropriate. A magazine-size page at 300 dots per
inch is 3300 pixel high and 2500 pixel wide. Uncom-
pressed, it occupies 25 MBytes of memory, more than
what the average PC can handle. A practical docu-
ment image viewer would need to keep the image in a
compressed form in the memory of the machine, and
only decompress on-demand the part of the image that
is displayed on the screen.

The DjVu document image compression technique
described in this paper is an answer to all the above
problems. With DjVu , scanned pages at 300dpi in full
color can be compressed down to 30 to 60 KBytes files
from 25 MBytes originals with excellent quality. Black
and white pages typically occupy 10 to 30 KBytes
once compressed. This puts the size of high-quality
scanned pages in the same order of magnitude as an
average HTML page (44 KBytes according to the lat-
est statistics). DjVu pages are displayed within the
browser window through a plug-in. The DjVu plug-in
allows easy panning and zooming of very large images.
This is made possible by an on-the-fly decompression
method which allows images that would normally re-
quire 25 MBytes of RAM once decompressed to re-
quire only 2 MBytes of RAM.

The basic idea behind DjVu is to separate the text
from the backgrounds and pictures and to use differ-
ent techniques to compress each of those components.
Traditional methods are either designed to compress
natural images with few edges (JPEG), or to compress
black and white document images almost entirely com-
posed of sharp edges (CCITT G3, G4, and JBIG-1).
The DjVu technique improves on both, and combines
the best of both approaches.

Section 2 reviews the current available compression
and displaying technologies and states the require-
ments for document image compression. Section 3 de-
scribes the DjVu method of separately coding the text
and drawings on one hand, and the pictures and back-
grounds on the other hand. Section 4 turns this idea
into an actual image compression format. It starts
with a description of the method used by DjVu to en-
code the text and the drawings. This method is a
variation of AT&T’s proposal to the new JBIG2 fax
standard [1]. Tt also includes a description of the ITW44
wavelet-based compression method for pictures and

background. The performance of both of these meth-
ods heavily relies on a new adaptive binary arithmetic
coding technique called the Z-coder, also briefly de-
scribed. Section 5 introduces the plug-in that allows
to browse DjVu documents through standard appli-
cations such as Netscape Navigator or Microsoft Ex-
plorer with a DjVu plug-in. Comparative results on a
wide variety of document types are given in Section 6.

2 Image-Based Digital Libraries

The “image-based approach” to digital libraries is
to store and to transmit documents as images. To
achieve that, we need to devise a method for com-
pressing document images that makes it possible to
transfer a high-quality page over low-speed links (mo-
dem or ISDN) in a few seconds. OCR would only be
used for indexing, with less stringent constraints on
accuracy.

Several authors have proposed image-based ap-
proaches to digital libraries. The most notable ex-
ample is the RightPages system [3]. The RightPages
system was designed for document image transmission
over a local area network. It was used for some years
by the AT&T Bell Labs technical community, and dis-
tributed commercially for customized applications in
several countries. The absence of a universal and open
platform for networking and browsing, such as today’s
Internet, limited the dissemination of the RightPages
system. Similar proposals have been made more re-
cently [4, 5].

All of the above image-based approaches, and most
commercially available document image management
systems, are restricted to black and white (bi-level)
images. This is adequate for technical and business
documents, but insufficient for other types of docu-
ments such as magazines, catalogs, or historical doc-
uments. Many formats exist for coding bi-level doc-
ument, images, notably the CCITT G3 and G4 fax
standards, the recent JBIG1 standard, and the up-
coming JBIG2 standard. Using AT&T’s proposals to
the JBIG2 standard, images of a typical black and
white page at 300dpi (dots per inch) can be transmit-
ted over a modem link in a few seconds. Work on
bi-level image compression standards is motivated by
the fact that, until recently, document images were
primarily destined to be printed on paper. Most low-
cost printer technologies excel at printing bi-level im-
ages, but they must rely on dithering and half-toning
to print grey-level or color images, thus reducing their
effective resolution.

The low cost and availability of high-resolution
color displays is causing more and more users to rely
on their screen rather than on their printer to dis-

play document images. Even modern low-end PCs
can display 1024x768 pixel images with 16 bits per
pixel (5 bits per RGB component), while high-end PCs
and workstations can display 1280x1024 at 24 bits per
pixel.

Most documents displayed in bi-level mode are
readable at 200dpi, but are not pleasant to read. At
300dpi the quality is quite acceptable in bi-level mode.
Displaying an entire 8.5x11 letter-size page at such
high resolution requires a screen resolution of 3300 pix-
els vertically and 2500 pixels horizontally, which is be-
yond traditional display technology. Fortunately, us-
ing color or gray levels when displaying document im-
ages at lower resolutions drastically improves readabil-
ity and subjective quality. Most documents are read-
able when displayed at 100dpi on a color or grey-scale
display. Only documents with particularly small fonts
require 150dpi for effortless readability. At 100dpi, a
typical page occupies 1100 pixels vertically, and 850
pixels horizontally. This is within the range of today’s
high-end displays. Low-end PC displays and high-end
portable computer displays have enough pixels, but in
the landscape mode rather that the desired portrait
mode.

3 Document Image Compression with
DjVu

As we stated earlier, the digital library experience
cannot be complete without a way of transmitting and
displaying document images in color. Traditional color
image compression standards such as JPEG are inap-
propriate for document images. JPEG’s use of local
cosine transforms relies on the assumption that the
high spatial frequency components in images can es-
sentially be removed (or heavily quantized) without
too much degradation of quality. While this assump-
tion holds for most pictures of natural scenes, it does
not for document images. A different technique is
required to code accurately and efficiently the sharp
edges of character images so as to maximize their clar-
ity.

It is clear that different elements in the color im-
age of a typical page have different perceptual char-
acteristics. First, the text is usually highly contrasted
from the background with sharp edges. The text must
be rendered at high resolution, 300dpi in bi-level, or
100dpi in color, if reading the page is to be a pleas-
ant experience. The second element in a document
image is the pictures. Rendering pictures at 50dpi
to 100dpi is typically sufficient for acceptable quality.
The third element is the background color and paper
texture. The background colors may not require more
than 25dpi resolution.

Tatal reguier price - M1
rdar artirs outht - sve $45.32 - pay $289.00
D i et i e LRI

[y

—_—
VISIT OUR SHOWROOM!
i s e 10k Ottt ne| arkat :

VISIT OUR WL
e gy e T

Figure 1: Ezample of color document (hobby002)

Let us consider a document image scanned at
300dpi with 24 bits per pixel such the catalog page
shown in Figure 1. The main idea of our document
image compression technique is to generate and en-
code separately three images from which the original
image can be reconstructed: the background image,
the foreground image and the mask image. The first
two are low-resolution color images, and the latter is
a high-resolution bi-level image (300dpi). A pixel in
the decoded image is constructed as follows: if the
corresponding pixel in the mask image is 0, the out-
put pixel takes the value of the corresponding pixel
in the appropriately upsampled background image. If
the mask pixel is 1, the pixel color is chosen as the
color of the connected component (or taken from the
foreground image). The background image (see for
instance the lower right image of Figure 2) can be
encoded with a method suitable for continuous-tone
images. DjVu uses a progressive, wavelet-based com-
pression algorithm called IW44 for this purpose. The
mask image (the upper left image of Figure 2) can be
encoded with a bi-level image compression algorithm.
DjVu uses a method called JB2 for this purpose.

A complete description of
DjVu ’s foreground /background separations algorithm
is beyond the scope of this paper, so only the main
ideas are given here. The image is partitioned into
square blocks of pixels. A clustering algorithm finds
the two dominant colors within each block. Then, a
relaxation algorithm ensures that neighboring blocks
assign similar colors to the foreground and the back-
ground. After this phase, each pixel is assigned to the
foreground if its color closer to the foreground cluster
prototype than to the background cluster prototype.
A subsequent phase cleans up and filters foreground
components using a variety of criteria.

4 The DjVu Compression Format

Here are the elements that compose a DjVu encoded
image file:

1. The text and drawings, also called the Mask, are
represented by a single bitmap whose bits indicate
whether the corresponding pixel in the document
image has been classified as a foreground or a
background pixel. This bitmap typically contains
all the text and the high-contrast components of
the drawings. It is coded at 300dpi using an algo-
rithm called JB2, which is a variation of AT&T’s
proposal to the upcoming JBIG2 fax standard (cf.
Section 4.1).

2. The color of the text, namely the Foreground, con-
tain a large number of neighboring pixels with
almost identical colors. It can be considered as
uniform for a given mark (i.e. a connected com-
ponent of foreground pixels).

3. The Background is coded at 100dpi using the
wavelet-based compression algorithm called IW44
described in Section 4.2.

The foreground/background representation was
proposed in the ITU MRC/T.44 recommendation
(Mixed Raster Content [6]). The idea was used in
Xerox’s XIFF image format, which currently uses
CCITT-G4 to code the mask layer, and JPEG to code
the background and foreground layers. A similar for-
mat is used in Xerox’s PagisPro desktop application
for document scanning and indexing.

DjVu achieves superior compression ratios by using
new compression algorithms for the mask layer as well
as for the background and foreground layers. Here are
some of the novel techniques used by DjVu : the soft
pattern matching algorithm [12], used in the JB2 bi-
level image compression algorithm for the mask layer;
the sparse set representation of wavelet coefficients

used by the IW44 wavelet-based encoder; a multi-scale
successive projections algorithm [20], which avoids
spending bits to code the parts of the background im-
age that are covered by foreground objects. The effi-
ciency of IW44 and JB2 heavily draws on their use an
efficient binary adaptive arithmetic coder called the
ZP-coder [19]. On average, the ZP-coder is faster and
yields better average compression than other approx-
imate arithmetic coders. All these algorithms have
real-time implementations, and have been integrated
into a standalone DjVu encoder. Each component of
the encoder is briefly described below.
4.1 Coding the Bilevel Mask Using JB2
The bi-level image compression algorithm used by
DjVu to encode the mask is dubbed JB2. It is a vari-
ation on AT&T’s proposal to the upcoming JBIG2
fax standard. Although the JBIG1 [1] bi-level image
compression algorithm works quite well, it has become
clear over the past few years that there is a need to
provide better compression capabilities for both loss-
less and lossy compression of arbitrary scanned images
(containing both text and half-tone images) with scan-
ning resolutions from 100 to 800 dots per inch. This
need was the basis for JBIG2, which is being devel-
opped as a standard for bi-level document coding. The
key to the compression method is a method for mak-
ing use of the information in previously encountered
characters without risking the introduction of charac-
ter substitution errors that is inherent in the use of
Optical Character Recognition (OCR) methods[11].
The basic ideas behind JB2 are as follows:

e The basic image is first segmented into individual
marks (connected components of black pixels).

e The marks are clustered hierarchically based on
similarity using an appropriate distance measure.

e Some marks are compressed and coded directly
using a statistical model and arithmetic coding.

e Other marks are compressed and coded indirectly
based on previously coded marks, also using a sta-
tistical model and arithmetic coding. The previ-
ously coded mark used to help in coding a given
mark may have been coded directly or indirectly.

e The image is coded by specifying, for each mark,
the identifying index of the mark and its position
relative to that of the previous mark.

There are many ways to achieve the clustering and
the conditional encoding of marks, the algorithm that
we currently use is called “soft pattern matching” [12].

This algorithm does not yet attempt to optimize the
clustering step.

The key novelty with JB2 coding is the solution to
the problem of substitution errors in which an imper-
fectly scanned symbol (due to noise, irregularities in
scanning, etc.) is improperly matched and treated as a
totally different symbol. Typical examples of this type
occur frequently in OCR representations of scanned
documents where symbols like 0’ are often represented
as ¢’ when a complete loop is not obtained in the
scanned document, or a ’'t’ is changed to an 'l when
the upper cross in the 't’ is not detected properly. By
coding the bitmap of each mark, rather than simply
sending the matched class index, the JB2 method is
robust to small errors in the matching of the marks to
class tokens. Furthermore, in the case when a good
match is not found for the current mark, that mark
becomes a token for a new class. This new token is
then coded using JBIG1 with a fixed template of previ-
ous pixels around the current mark. By doing a small
amount of preprocessing, such as elimination of very
small marks that represent noise introduced during
the scanning process, and smoothing of marks before
compression, the JB2 method can be made highly ro-
bust to small distortions of the scanning process used
to create the bi-level input image.

The JB2 method has proven itself to be about 20%
more efficient that the JBIG1 standard for lossless
compression of bi-level images. By running the al-
gorithm in a controlled lossy mode (by preprocessing
and decreasing the threshold for an acceptable match
to an existing mark), the JB2 method provides com-
pression ratios about 2 to 4 times that of the JBIG1
method for a wide range of documents with various
combinations of text and continuous tone images. In
lossy mode, JB2 is 4 to 8 times better than CCITT-G4
(which is lossless). It is also 4 to 8 times better than
GIF.

4.2 Wavelet Compression of Background
Images

Multi-resolution wavelet decomposition is one of
the most efficient algorithms for coding color images
[7, 8], and is the most likely candidate for future
multi-level image compression standards. The image
is first represented as a linear combination of locally
supported wavelets. The image local smoothness en-
sures that the distribution of the wavelet coefficients is
sharply concentrated around zero. High compression
efficiency is achieved using a quantization and coding
scheme that takes advantage of of this peaked distri-
bution.

Because of the smoothness assumption, it is natu-

ral to use wavelet-based algorithms for encoding the
image backgrounds. However, the requirements of the
DjVu project set extreme constraints on the speed and
memory requirements of the wavelet encoding scheme.
The background image is typically a 100 dpi color im-
age containing one to two million pixels. It may only
represent a nearly uniform background color. It may
also contain colorful pictures and illustrations which
should be displayed incrementally while the DjVu data
is coming.

Our wavelet compression algorithm uses an inter-
mediate representation based on a very fast five stage
lifting decomposition using Deslauriers-Dubuc inter-
polating wavelets with four analyzing moments and
four vanishing moments [9]. Then the wavelet coeffi-
cients are progressively encoded using arithmetic cod-
ing (cf. Section 4.3) and a technique named “Hierar-
chical Set Difference” comparable to zero-trees [8] or
set-partitioning [10] algorithms.

Finally we have developed a technique for coding
the background image without wasting bits on back-
ground pixels that will be masked by foreground text.
This simple and direct numerical method sets a large
number of wavelet coefficients to zero, while trans-
forming the remaining wavelet coefficients in order to
preserve the visible pixels of the background only. The
null coefficients do not use memory and are coded very
efficiently by the arithmetic coder.

During decompression, the wavelet coefficients are
represented in a compact sparse array which uses al-
most no memory for zero coefficients. Using this tech-
nique, we can represent the complete background us-
ing only a quarter of the memory required by the im-
age pixels, and generate the fully decompressed image
on-demand. This greatly reduces the memory require-
ments of the viewer.

4.3 Arithmetic Coding

Arithmetic coding [13, 14] is a well known algorithm
for encoding a string of symbols with compression ra-
tios that can reach the information theory limit. Its
mechanism is to partition the interval [0, 1) of the real
line into subintervals whose lengths are proportional to
the probabilities of the sequences of events they repre-
sent. After the subinterval corresponding to the actual
sequence of data is known, the coder outputs enough
bits to distinguish that subinterval from all others. If
probabilities are known for the possible events at a
given point in the sequence, an arithmetic coder will
use almost exactly —log, p bits to code an event whose
probability is p. In other words, the coder achieves en-
tropic compression. We can think of the encoder and
decoder as black boxes that use the probability infor-

mation to produce and consume a bitstream.

Arithmetic coders unfortunately are computation-
ally intensive. For each string element, a subroutine
must provide the coder/decoder with a table con-
taining estimated probabilities for the occurrence of
each possible symbol at this point in the string. The
coder/decoder itself must perform a table search and
at least one multiplication.

4.3.1 Binary Arithmetic Coding

Binary adaptive arithmetic coders have been devel-
oped to overcome this drawback, as computations can
be approximated using a small number of shifts and
additions instead of a multiplication.

Moreover, Binary Adaptive Arithmetic Coders in-
clude an adaptive algorithm for estimating the symbol
probabilities. This algorithm updates the integer vari-
able along with the encoding and decoding operations.
Complex probability models are easily represented by
maintaining multiple indices representing the condi-
tional probabilities of the symbols for each value of
the contextual information considered by the model.

The QM-Coder used in the JBIG1 standard [1] and
in the lossless mode of JPEG standard is an example

of approximate binary arithmetic coder. Other such
coders are the Q-Coder [16] and the ELS-Coder [17].

4.3.2 The Z-Coder and the ZP-Coder

We have implemented new approximate binary arith-
metic coders, namely the Z-Coder and the ZP-Coder.

The Z-Coder was developed as a generalization of
the Golomb run-length coder [18], and it has inherited
its qualities of speed and simplicity [19]. Its inter-
nal representation leads to faster and more accurate
implementations than either the Q-Coder or the QM-
Coder. The probability adaptation in the Z-Coder also
departs from the Q-Coder and QM-Coder algorithms
in a way that simplifies the design of the coder tables.

The ZP-Coder is a variation on the Z-Coder with
nearly exactly the same speed and performance char-
acteristics. A rougher approximation in the optimal
entropic Z-value costs less than half a percent penalty
in code size.

We have compared the ZP-Coder with three other
adaptive binary coders, the QM-Coder, the Q15-
Coder (a variant of the Q-Coder that uses 15 bit
registers instead of 12-bit), and the Augmented ELS-
Coder, based on the ELS-Coder.

In the main test, various coders including the ZP-
Coder have been incorporated into the JB2 compres-
sion system. The ZP-Coder did slightly worse than

the ELS-Coder, about the same as the QM-Coder,
and better than the Q15-Coder. The differences are
all small, in the 1 to 2 percent range. We also per-
formed two artificial tests. In a test of steady state
behavior, coding a long sequence of random bits with
fixed probabilities, the ZP-Coder performed about as
well as the QM-Coder, better than the Q15-Coder,
and much better than the ELS-Coder.

In a test of early adaptation, coding a long sequence
of random bits with fixed probabilities but reinitializ-
ing the encoder index every 50 output bits, the ZP-
Coder did better than the QM-Coder, which was bet-
ter than the Q15-Coder, which in turn was better than
the ELS-Coder.

The ZP-Coder’s decoding speed is faster than that
of the QM-Coder, which is in turn faster than the
other two coders.

5 Browsing DjVu Documents

Satisfaction of the digital library user depends crit-
ically on the performance of the browsing tools. Much
more time is spent viewing documents than formulat-
ing queries. As a consequence, browsers must provide
very fast response, smooth zooming and scrolling abil-
ities, realistic colors and sharp pictures.

These requirements put stringent requirements on
the browsing software. The full resolution color image
of a page requires about 25 megabytes of memory. We
cannot store and process many of these in the browser
without exceeding the memory limits of average desk-
top computers. However, we want to display such im-
ages seamlessly and allow users to drag them in real
time on their screen.

We developed a solution called “Multi-threaded
two-stage decoding” consisting of the following:

e A first thread, known as the decoding thread,
reads bytes on the internet connection and par-
tially decodes the DjVu stream. This first stage
of the decoding process asynchronously updates
an intermediate representation of the page image.
This representation is still highly compressed: our
implementation requires less than 2 megabytes of
main memory per page.

e A second thread, known as the interactive thread,
handles user interaction and repaints the screen
as needed. This thread uses the intermediate rep-
resentation to reconstruct the pixels correspond-
ing to the parts of the document that must be
redrawn on the screen.

Despite the complexity related to thread management
and synchronization, this organization provides many

airplane is an E E
ne because of l

struction, very -y -
mmend: any 4

rop GP08040, nicad 7 shaftadapte
HLJEaﬁaorEURBSS:apc:(op back after t

Nicad Battery Speel

\

' HLJE30B J
BOTI400R 8.4 Volt, 1400 controller

Baml'y [—— F— m BEC [e——
3.1sec/23k: the mask (text, 23K) is loaded.

-

alrplana is an
ne because of
istruction, WIX
mmmnd: 304 icad 7 shaft

rop .n adapte
HLJE30B or EURﬂsg.apGrkDp back after t:

Nicad Battery

BO71400R 8.4 Volt, 1400 Ek"r.'é%‘iﬂ 'i
SCR Nicad e r
mry SEEEERTEETS S Se e m ssmsasaann

9.4sec/67K: Loading is finished.

GPOBOAO, nwr shaft adapt

rop
HLJE308 or EU prop backaftert
Nicad Battery

B0O71400R 8.4 Volt, 1400 Ek"E:“iﬁ J
SCR Nicad ntroller
mw - m BEC ERsaEREEE

4.8sec/35K: The background is still blurred.

35K are necessary for this background
image.

Figure 2: Downloading through a 56K modem: progressive decompression of text first, followed by the background

at increasing quality(detail of Figure 1)

advantages. Since both threads work asynchronously,
the browser is able to display images incrementally
while data is coming in. Memory requirements are
limited because the interactive thread computes im-
age pixels only for regions smaller than the screen size.
Scrolling operations are smooth because they involve
just the second stage decoding of the few pixels un-
covered by the scrolling operations.

We implemented these ideas in a plug-in for
Netscape Navigator or Internet Explorer. Each page
of a DjVu document is displayed by invoking its URL.
Behind the scenes, the plug-in implements information
caching and sharing. This design allows the digital li-
brary designer to set up a navigation interface using
well known Web technologies like HTML or Java. Fig-
ure 2 shows how a document is displayed while it is
downloaded through a 56K modem.

6 Results and Comparisons with

Other Methods.

We have selected seven images representing typical
color documents. These images have been scanned at
300dpi and 24 bits/pixel from a variety of sources. Our
compression scheme combines two main chunks (one
wavelet compressed chunk for the background color,
one JBIG2 chunk for the bitmap) whose combined size
is reported in Figure 3.

Figure 3 gives a full comparison between JPEG
and DjVu, with details from each image to assess the
readability. Those details do not show the significant
amount of graphics and texture that all these images
contain. However, we give the percentage of bits spent
on coding graphics and texture in each image, which
ranges from 22 to 73. When compared to the original
300dpi raw image, DjVu achieves compression rates
ranging from 324 to 579.

Compressing JPEG documents at 300 dpi with the
lowest possible quality setting (20) yields images that
are of comparable quality as with DjVu. As shown
in the “JPEG, 300dpi” column, file sizes are 5 to 10
times larger than DjVu file sizes.

For the sake of comparison, we subsampled the doc-
ument images to 100dpi (with local averaging) and
applied JPEG compression adjusting the quality pa-
rameter to produce files sizes similar to those of DjVu.
In the “JPEG, 100dpi” column, the fact that text is
hardly readable is not due to the 100dpi subsampling,
but to “ringing” artifacts inherent in low JPEG qual-
ity settings.

Figure 4 shows a more global comparison between
DjVu and JPEG-100.

Ty T AU ITLS T M T e

wasy nicad swap. It @il baisa | the easy nicad swa 7plt‘s§lbalsaa
only about oc_my-qup nght(onlyame oz. fully equip

mdblmam channel radio (use 3 channels), G
md-wwmw BO71400R,

Radio
GR1162 § n

— —

GR1162 S
{THRS22 HiTec Wlh {THRS22 HiTec Motor & 8»

‘ocus 4 FM Radio IngProp ... iocus 4 FM Radio ingProp...
jystem ... $129.00 jystem ... $129.00
JPEG at 100dpi only. DjVu.

Figure 4: Comparison of JPEG at 100dpi (left) with
quality factor 80% and DjVu (right). The images are
cropped from hobby002. The file sizes are 82K for
JPEG and 67K for DjVu

7 Conclusion

As digital libraries are increasingly becoming a fact
of life, they will require a universal standard for ef-
ficient storage, retrieval and transmission of high-
quality document images. The work described in this
paper is a substantial step towards meeting this need,
by proposing a highly efficient compression format
(DjVu), together with a browser that enables fast
internet access. With the same level of legibility (300
dots per inch), DjVu achieves compression ratios 5 to
10 times higher than JPEG.

The DjVu plug-in is freely available for download
at http://djvu.research.att.com. This site con-
tains an experimental “Digital Library” with docu-
ments from various origins. The DjVu encoder is also
available for research and evaluation purposes.

It is possible to further optimize the compres-
sion rate. A version of DjVu that encodes sev-
eral pages together will be able to share JBIG2
shape dictionaries between pages. Problems such
as foreground/background/mask separation or con-
nected component filtering are being rephrased in
terms of compression rate optimization.

The addition of text layout analysis and optical
character recognition (OCR) will make it possible to
index and edit text extracted from DjVu-encoded doc-
uments.

References

[1] JBIG.
ITU recommendation T.82,
tional Standard 11544, 1993.

Progressive bi-level image compression.
ISO/IEC Interna-

Image JPEG, 300dpi, JPEG, 100dpi, DjVu
Description Raw image detail quality 20 size=DjVu compressed
Magazine Add ’ | ' i he
% image= 56 L. ~ B = |
ads-freehand-300 20640K 292K 70:1 50K 412:1 52K 396:1
Brattain
Notebook
% image= 22
brattain-0001 9534K 116K 82:1 17K 560:1 19K 501:1

Scientific
Article
% image= 46
graham-001

22013K

Newspaper
Article
% image= 50

lrr-wpost-lrr-wpost-1

41K 536:1

383K 57:1 38K 579:1

12990K

250K 51:1 38K 341:1 40K 324:1

Cross-Section
of Jupiter _
% image= 73
planets-jupiter 24405K 284K 85:1 47K 519:1 47K 519:1
XVIIIth
Century book
% image= 45
cuisine-p006 12128K 206K 58:1 35K 346:1 37K 327:1
US First
Amendment
% image= 30
usa-amendl 31059K 388K 80:1 77K 403:1 73K 425:1

Figure 3: Compression results for seven selected images with 4 compression format. Raw applies no compression.
JPEG-100 quality ranges from 5 to 50, the value yielding the compression rate which is the closest to DjVu is
chosen. The “% image” value corresponds to the percentage of bits required to code for the background. Each
column shows the same selected detail of the image. To make selection as objective as possible, when possible, the
first occurrence of the word “the” was chosen. The two numbers under each image are the file size in kilobytes
and the compression ratio (with respect to the raw file size).

[2] M. Lesk. Practical Digital Libraries: Books, Bytes
and Bucks. Morgan Kaufmann, 1997.

[3] G. Story, L. O’Gorman, D. Fox, L. Shaper, and
H Jagadish. The RightPages image-based elec-
tronic library for alerting and browsing. IEEFE
Computer, 25(9):17-26, 1992.

[4] T. Phelps and R. Wilensky. Towards active, ex-
tensible, networked documents: Multivalent archi-
tecture and applications. In Proceedings of the
1st ACM International Conference on Digital Li-
braries, pages 100-108, 1996.

[5] I. H. Witten, A. Moffat, and T. C. Bell. Managing
Gigabytes: Compressing and Indexing Documents
and Images. Van Nostrand Reinhold, New York,
1994.

[6] MRC. Mixed rater content (MRC) mode. ITU
Recommendation T.44, 1997.

[7] E. H. Adelson, E. Simoncelli, and R. Hingorani.
Orthogonal pyramid transform for image coding.
In Proc. SPIE vol 845: Visual Communication
and Image Processing II., pages 50-58, Cambridge,
MA, October 1987.

[8] J. M. Shapiro. Embedded image coding using ze-
rotrees of wavelets coefficients. IFEE Transac-
tions on Signal Processing, 41:3445-3462, Decem-
ber 1993.

[9] Wim Sweldens. The lifting scheme: A custom-
design construction of biorthogonal wavelets.
Journal of Applied Computing and Harmonic
Analysis, 3:186-200, 1996.

[10] Amir Said and William A. Pearlman. A new, fast,
and efficient image codec based on set partitioning
in hierarchical trees. IEEE Transactions on Cir-
cuits and Systems for Video Technology, 6(3):243—
250, June 1996.

[11] R. N. Ascher and G. Nagy. A means for achiev-
ing a high degree of compaction on scan-digitized
printed text. IEEE Trans. Comput., C-23:1174—
1179, November 1974.

[12] P. G. Howard. Text image compression using soft
pattern matching. Computer Journal, 1997. to
appear.

[13] I. H. Witten, R. M. Neal, and J. G. Cleary. Arith-
metic coding for data compression. Communica-
tions of the ACM, 30(6):520-540, June 1987.

[14] P. G. Howard and J. S. Vitter. Arithmetic coding
for data compression. Proceedings of the IEEE,
82:857-865, 1994.

[15] JPEG. Digital compression and coding of contin-
uous tone still images — requirements and guide-
lines. ITU recommendation T.81, ISO/IEC Inter-
national Standard 10918-1, 1993.

[16] W. B. Pennebaker, J. L. Mitchell, G. G. Lang-
don, and R. B. Arps. An overview of the basic
principles of the g-coder adaptive arithmetic bi-
nary coder. IBM Journal of Research and Devel-
opment, 32(6):717-726, November 1988.

[17] Wm. D Withers. A rapid entropy-coding algo-
rithm. Technical
report, Pegasus Imaging Corporation, 1996. Url
ftp://www.pegasusimaging.com/pub/elscoder.pdf.

[18] S.W. Golomb. Run-length encodings. IEEE
Trans. Inform Theory, 1T-12:399-401, July 1966.

[19] L. Bottou, P. Howard, and Y. Bengio. The Z-
coder adaptive binary coder. In Proceedings of
IEEE Data Compression Conference, Snowbird,
UT, 1998.

[20] L. Bottou and S. Pigeon. Lossy compression of
partially masked still images. In Proceedings of
IEEE Data Compression Conference, Snowbird,
UT, 1998.

