High Quality Document Image Compression with DjVu

Léon Bottou, Patrick Haffner, Paul G. Howard,
Patrice Simard, Yoshua Bengio and Yann LeCun
AT&T Labs
Lincroft, NJ
{leonb,haffner,pgh,patrice,yoshua,yann } @research.att.com

July 13, 1998

Abstract

We present a new image compression technique called “DjVu ” that is specifically geared towards
the compression of high-resolution, high-quality images of scanned documents in color. This enables
fast transmission of document images over low-speed connections, while faithfully reproducing the
visual aspect of the document, including color, fonts, pictures, and paper texture.

The DjVu compressor separates the text and drawings, which needs a high spatial resolution, from
the pictures and backgrounds, which are smoother and can be coded at a lower spatial resolution.
Then, several novel techniques are used to maximize the compression ratio: the bi-level foreground
image is encoded with AT&T’s proposal to the new JBIG2 fax standard, and a new wavelet-based
compression method is used for the backgrounds and pictures. Both techniques use a new adaptive
binary arithmetic coder called the Z-coder. A typical magazine page in color at 300dpi can be
compressed down to between 40 to 60 KB, approximately 5 to 10 times better than JPEG for a similar
level of subjective quality. A real-time, memory efficient version of the decoder was implemented,
and is available as a plug-in for popular web browsers.

1 Introduction

Much of the world’s cultural, artistic, and scientific production is currently available only in paper form.
While the World-Wide Web has been heralded as the platform for the world’s universal library, progress
has been slowed by the absence of a good way to convert paper documents to a digital form that can be
easily distributed over the World-Wide Web.

Many of the world’s major libraries are digitizing their collections. Recent studies have shown that
it is already less costly to store documents digitally than to provide for buildings and shelves to house
them in paper form [Lesk, 1997]. However, the distribution of these collections over the web has proved
somewhat impractical due to large size of scanned document images.

Documents can be scanned and simply compressed using JPEG or GIF. Unfortunately, the resulting
files tend to be quite large if one wants to preserve the readability of the text. Compressed with JPEG,
a color image of a typical magazine page scanned at 100dpi (dots per inch) would be around 100 KBytes
to 200 KBytes, and would be barely readable. The same page at 300dpi would be of acceptable quality,
but would occupy around 500 KBytes. Even worse, not only would the decompressed image fill up the
entire memory of an average PC, but also only a small portion of it would be visible on the screen at
once. GIF is often used on the Web for distributing black and white document images, but it requires 50
to 100KB per page for decent quality (150dpi).

An alternative method is to convert existing documents to computer-friendly formats using Document
Understanding techniques and Optical Character Recognition. However, while the accuracy of these
systems has been steadily improving over the last decade, they are still far from being able to faithfully
translate a scanned document without extensive manual correction. Even if pictures and drawings are
scanned and integrated into the web page, much of the visual aspect of the original document is likely
to be lost. Visual details, including font irregularities, paper color, and paper texture, are particularly

important for historical documents, and may also be crucial in documents with tables, mathematical or
chemical formulae, and handwritten text.

It is clear that the complete digitization of the world’s major library collections is only a matter of
time. In this context, it seems paradoxical that there exist no universal standard for efficient storage,
retrieval, and transmission of high-quality document images in color. The pleasure of reading an old book
or browsing through a glossy catalog is not yet part of the digital realm. The fear of losing some critical
information while scanning and translating a scientific, legal, or historical document deters scientists and
scholars from using tools that would greatly increase their productivity.

The DjVu document image compression technique presented in this paper is an attempt to solve
the problem of distributing high-quality, high-resolution images of scanned document in color over the
Internet. With DjVu , scanned pages at 300dpi in full color can be compressed down to 40 to 60 KBytes
files from 25 MBytes originals. Black and white pages in DjVu typically occupy 10 to 30 KBytes. This
brings down the size of high-quality scanned pages to the same order of magnitude as an average HTML
page on the Web today (44 KBytes according to the latest statistics). DjVu pages are displayed within
Web browser windows through a plug-in.

The basic idea behind DjVu is that characters and line drawings need high spatial resolution but very
little color resolution because they are composed of roughly uniform color areas with sharp edges. On
the other hand, pictures and backgrounds are smoother and can be coded at lower spatial resolution with
more bits per pixel. The DjVu compressor separates the text and drawings on one hand, from the pictures
and backgrounds on the other hand. The text and drawings are compressed with a bi-level compression
method at full resolution (typically 300dpi) , while the backgrounds and pictures are compressed with a
wavelet-based technique at one-third the resolution (typically 100dpi).

Section 2 reviews the current available compression and displaying technologies and states the require-
ments for document image compression. Section 3 describes the DjVu method of separately coding the
text and drawings on one hand, and the pictures and backgrounds on the other hand. Section 4 turns this
idea into an actual image compression format. It starts with a description of the method used by DjVu
to encode the text and the drawings. This method is a variation of AT&T’s proposal to the new JBIG2
fax standard [JBIG, 1993]. It also includes a description of the IW44 wavelet-based compression method
for pictures and background. The performance of both of these methods heavily relies on a new adaptive
binary arithmetic coding technique called the ZP-coder, also briefly described. Section 6.1 introduces the
plug-in that allows to browse DjVu documents through standard applications such as Netscape Navigator
or Microsoft Explorer. Comparative results on a wide variety of document types are given in Section 7.

2 Image-Based Digital Libraries

The “image-based approach” to digital libraries is to store and to transmit documents as images. OCR
can be used, but its role is limited to indexing, which has less stringent accuracy requirement than full
transcription.

Several authors have proposed image-based approaches to digital libraries. The most notable example
is the RightPages system [Story et al., 1992]. The RightPages system was designed for document image
transmission over a local area network. It was used for some years by several research institutions
including AT&T Bell Labs, and the University of San Francisco. It was also distributed commercially for
customized applications in several countries. The absence of a universal and open platform for networking
and browsing, such as today’s Internet, limited the dissemination of the RightPages system. Other
proposals for image-based digital libraries have been made more recently [Phelps and Wilensky, 1996,
Witten et al., 1994].

All of the above image-based approaches, and most commercially available document image manage-
ment systems, are restricted to black and white (bi-level) images. This is adequate for technical and
business documents, but insufficient for other types of documents such as magazines, catalogs, or histor-
ical documents. Many formats exist for coding bi-level document images, notably the CCITT G3 and
G4 fax standards, the recent JBIG1 standard. Using AT&T’s proposals to the JBIG2 standard, images
of a typical black and white page at 300dpi occupy 10 to 30KB, which can be transmitted over a modem
link in a few seconds. Work on bi-level image compression standards is motivated by the fact that,
until recently, document images were primarily destined to be printed on paper. Most low-cost printer

technologies excel at printing bi-level images, but they must rely on dithering and half-toning to print
grey-level or color images, thus reducing their effective resolution.

The low cost and availability of high-resolution color displays is causing more and more users to
rely on their screen rather than on their printer to display document images. Modern low-end PCs can
display 1024x768 pixel images with 16 bits per pixel (5 bits per RGB component), while high-end PCs
and workstations can display 1280x1024 at 24 bits per pixel.

Most documents displayed in bi-level mode are readable at 200dpi, but are not pleasant to read. At
300dpi the quality is quite acceptable in bi-level mode. Displaying an entire 8.5x11 letter-size page at such
high resolution requires a screen resolution of 3300 pixels vertically and 2500 pixels horizontally, which is
beyond traditional display technology. Fortunately, using color or gray levels when displaying document
images at lower resolutions drastically improves readability and subjective quality. Most documents are
readable when displayed at 100dpi on a color display. Only documents with particularly small fonts
require 150dpi for effortless readability. At 100dpi, a typical page occupies 1100 pixels vertically, and
850 pixels horizontally. This is within the range of today’s high-end displays. Low-end PC displays
and high-end portable computer displays have enough pixels, but in the landscape mode rather that the
desired portrait mode.

3 Document Image Compression with DjVu

As we stated earlier, the digital library experience cannot be complete without a way of transmitting
and displaying document images in color. Traditional color image compression standards such as JPEG
are inappropriate for document images. JPEG’s use of local cosine transforms relies on the assumption
that the high spatial frequency components in images can essentially be removed (or heavily quantized)
without too much degradation of quality. While this assumption holds for most pictures of natural scenes,
it does not for document images. A different technique is required to code accurately and efficiently the
sharp edges of character images so as to maximize their clarity.

It is clear that different elements in the color image of a typical page have different perceptual char-
acteristics. The text and line drawings for instance are usually highly contrasted from the background
with sharp edges. Experiments have shown that the readability of most documents is not degraded by
coding the text at 300dpi in bi-level mode. Displaying such images on color screens can be done by
low-pass filtering and subsampling. Except for the tiniest font, the readability is preserved if the image
is displayed with 100 screen pixels for each inch of paper. With pictures, on the other hand, 100dpi is
typically sufficient for an acceptable quality level.

Let us consider a document image scanned at 300dpi with 24 bits per pixel such as the catalog page
shown in Figure 1. The main idea of the technique presented in this paper is to generate and encode
separately three images from which the original image can be reconstructed: the background image, the
foreground image and the mask image. The first two are low-resolution color images, and the latter is
a high-resolution bi-level image (300dpi). A pixel in the decoded image is constructed as follows: if the
corresponding pixel in the mask image is 0, the output pixel takes the value of the corresponding pixel
in the appropriately upsampled background image. If the mask pixel is 1, the pixel color is chosen as the
color of the connected component (or taken from the foreground image). The background image (see for
instance the lower right image of Figure 4) can be encoded with a method suitable for continuous-tone
images. DjVu uses a progressive, wavelet-based compression algorithm called IW44 for this purpose.
The mask image (the upper left image of Figure 4) can be encoded with a bi-level image compression
algorithm. DjVu uses a method called JB2 for this purpose.

The foreground/background representation was proposed in the ITU MRC/T.44 recommendation
(Mixed Raster Content [MRC, 1997]). The idea is used in Xerox’s XIFF image format, which currently
uses CCITT-G4 to code the mask layer, and JPEG to code the background and foreground layers. The
format is used in Xerox’s PagisPro desktop application for document scanning and indexing. Comparison
between the various encoding scheme will be given in section Section 7.

4 The DjVu Compression Format

The elements that compose a DjVu encoded image file are:

1. The text and drawings, also called the mask, are represented by a single bitmap whose bits indicate
whether the corresponding pixel in the document image has been classified as a foreground or a
background pixel. This bitmap typically contains all the text and the high-contrast components of
the drawings. It is coded at 300dpi using an algorithm called JB2, which is a variation of AT&T’s
proposal to the upcoming JBIG2 fax standard (cf. Section 4.1).

2. The background is coded at 100dpi using the wavelet-based compression algorithm called TW44
described in Section 4.2.

3. The foreground contains the color of the text and line drawings. It generally contains large areas
of contiguous pixels with almost identical colors. This is because characters have generally a single
color, and neighboring characters have generally identical colors. This image is coded as a low-
resolution image using the same ITW44 algorithm.

The last step of all compression algorithms is entropy coding. The efficiency of IW44 and JB2 heavily
draws on their use of an efficient binary adaptive arithmetic coder called the ZP-coder [Bottou et al., 1998],
which is described in Section 4.3. The ZP-coder compares favorably with existing approximate arithmetic
coders both in terms of compression ratio and speed.

4.1 Coding the Bi-Level Mask Using JB2

The bi-level image compression algorithm used by DjVu to encode the mask is dubbed JB2. It is a
variation on AT&T’s proposal to the upcoming JBIG2 standard for fax and bi-level image compression.
Although the JBIG1 [JBIG, 1993] bi-level image compression algorithm works quite well, it has become
clear over the past few years that there is a need to provide better compression capabilities for both
lossless and lossy compression of arbitrary scanned images (containing both text and half-tone images)
with scanning resolutions from 100 to 800 dots per inch. This need was the basis for JB2. The key
to the JB2 compression algorithm is a method for making use of the information found in previously
encountered characters without risking the introduction of character substitution errors that is inherent
in the use of Optical Character Recognition (OCR) [Ascher and Nagy, 1974].
The basic ideas behind JB2 are as follows:

e The basic image is first segmented into individual marks (connected components of black pixels).
e The marks are clustered hierarchically based on similarity using an appropriate distance measure.
e Some marks are compressed and coded directly using a statistical model and arithmetic coding.

e Other marks are compressed and coded indirectly based on previously coded marks, also using a
statistical model and arithmetic coding. The previously coded mark used to help in coding a given
mark may have been coded directly or indirectly.

e The image is coded by specifying, for each mark, the identifying index of the mark and its position
relative to that of the previous mark.

There are many ways to achieve the clustering and the conditional encoding of marks, the algorithm
that we currently use is called “soft pattern matching” [Howard, 1997].

The key novelty with JB2 coding is the solution to the problem of substitution errors in which an
imperfectly scanned symbol (due to noise, irregularities in scanning, etc.) is improperly matched and
treated as a totally different symbol. Typical examples of this type occur frequently in OCR representa-
tions of scanned documents where symbols like ’0’ are often represented as ’c’ when a complete loop is
not obtained in the scanned document, or a ’'t’ is changed to an ’1”’ when the upper cross in the ’t’ is not
detected properly. By coding the bitmap of each mark, rather than simply sending the matched class
index, the JB2 method is robust to small errors in the matching of the marks to class tokens. Further-
more, in the case when a good match is not found for the current mark, that mark becomes a token for a
new class. This new token is then coded using JBIG1 with a fixed template of previous pixels around the
current mark. By doing a small amount of preprocessing, such as elimination of very small marks that
represent noise introduced during the scanning process, and smoothing of marks before compression, the
JB2 method can be made highly robust to small distortions of the scanning process used to create the
bi-level input image.

4.2 'Wavelet Compression of Background Images

Multi-resolution wavelet decomposition is one of the most efficient transforms for coding color images
[Adelson et al., 1987, Shapiro, 1993], and is the preferred candidate for many ongoing standardizations
efforts in color and gray-scale image compression. The image is first represented as a linear combination
of locally supported wavelets. The image local smoothness ensures that the distribution of the wavelet
coefficients is sparse and sharply concentrated around zero. High compression efficiency is achieved using
a quantization and coding scheme that takes advantage of this peaked distribution.

Because of the smoothness assumption, it is natural to use wavelet-based algorithms for encoding the
image backgrounds. The digital library applications for which DjVu is designed puts extreme requirements
on the technique used. The viewer (decoder) must be able to decode and display a page in at most 2
seconds to decode a page on a low-end PC. It needs to be progressive so that the image quality improves as
more bits arrive. It needs to do real-time decompression from a compact data structure so as not to exceed
the RAM capacity of an average PC with the fully decoded image. The background image is typically
a 100dpi color image containing one to two million pixels. It may contain a nearly uniform background
color, or it may contain colorful pictures and illustrations that should be displayed incrementally while
the DjVu data is coming.

Our wavelet compression algorithm uses an intermediate representation based on a very fast five stage
lifting decomposition using Deslauriers-Dubuc interpolating wavelets with four analyzing moments and
four vanishing moments [Sweldens, 1996]. Then the wavelet coefficients are progressively encoded using
arithmetic coding (cf. Section 4.3) and a technique named “Hierarchical Set Difference” that bears some
resemblance to zero-trees [Shapiro, 1993] or set-partitioning [Said and Pearlman, 1996] algorithms.

During decompression, the wavelet coefficients are represented in a compact sparse array that uses
almost no memory for zero coefficients. Using this technique, the complete background image can be
represented using only a quarter of the memory required by the image pixels. The piece of the image that
is deisplayed on the screen can generated on-the-fly from this sparse array at the required zoom factor.
This greatly reduces the memory requirements of the viewer.

If the foreground color is also represented as a low-resolution image, the same algorithm is used to
code this image. In the rest of the paper, this new wavelet compression format will be referred to as
IW44 (as we use 4x4 wavelets).

4.3 Arithmetic Coding

Arithmetic coding [Witten et al., 1987, Howard and Vitter, 1994] is a well-known method for encoding a
string of symbols with compression ratios that can approach the information theory limit. Its mechanism
is to interpret the bitstream to be encoded (or decoded) as a number between 0 and 1 and to partition
the interval [0,1) of the real line into subintervals whose lengths are proportional to the probabilities of
the sequences of events they represent. After the subinterval corresponding to the actual sequence of data
is known, the coder outputs enough bits to distinguish that subinterval from all others. If probabilities
are known for the possible events at a given point in the sequence, an arithmetic coder will use almost
exactly —log, p bits to code an event whose probability is p. In other words, the coder achieves entropic
compression. We can think of the encoder and decoder as black boxes that use the probability information
to produce and consume a bitstream.

Arithmetic coders unfortunately are computationally intensive. For each string element, a subroutine
must provide the coder/decoder with a table containing estimated probabilities for the occurrence of each
possible symbol at this point in the string. The coder/decoder itself must perform a table search and at
least one multiplication.

4.3.1 Binary Arithmetic Coding

Binary adaptive arithmetic coders have been developed to overcome this drawback. The computation
can be approximated using a small number of shifts and additions instead of a multiplication.
Moreover, Binary Adaptive Arithmetic Coders include an adaptive algorithm for estimating the sym-
bol probabilities. This algorithm updates the integer variable along with the encoding and decoding op-
erations. Complex probability models are easily represented by maintaining multiple indices representing

the conditional probabilities of the symbols for each value of the contextual information considered by
the model.
The QM-Coder used in the JBIG1 standard [JBIG, 1993] and in the lossless mode of JPEG standard is
an example of approximate binary arithmetic coder. Other such coders are the Q-Coder [Pennebaker et al., 1988]
and the ELS-Coder [Withers, 1996].

4.3.2 The Z-Coder and the ZP-Coder

We have implemented new approximate binary arithmetic coders called the Z-Coder and the ZP-Coder.

The Z-Coder was developed as a generalization of the Golomb run-length coder [Golomb, 1966], and
has inherited its qualities of speed and simplicity [Bottou et al., 1998]. Its internal representation leads
to faster and more accurate implementations than either the Q-Coder or the QM-Coder. The probability
adaptation in the Z-Coder also departs from the Q-Coder and QM-Coder algorithms in a way that
simplifies the design of the coder tables.

Golomb coders essentially code the length of contiguous strings of identical symbols as a binary
number. A Golomb coder is defined by the parameter M, which is the number of bits in that binary
number. Large values of M are preferrable when long strings of repeating symbols are likely, while small
values of M are preferrable when those long strings are unlikely. The Z-coder generalizes Golomb coders
by automatically adapting M to its optimal value, including non-integer values [Bottou et al., 1998].

The ZP-Coder is a variation on the Z-Coder with nearly exactly the same speed and performance
characteristics. A rougher approximation in the optimal entropic Z-value costs less than half a percent
penalty in code size. We have compared the ZP-Coder with three other adaptive binary coders, the
QM-Coder, the Q15-Coder (a variant of the Q-Coder that uses 15 bit registers instead of 12-bit), and
the Augmented ELS-Coder, based on the ELS-Coder.

In the main test, various coders including the ZP-Coder have been incorporated into the JB2 compres-
sion system. The ZP-Coder did slightly worse than the ELS-Coder, about the same as the QM-Coder,
and better than the Q15-Coder. The differences are all small, in the 1 to 2 percent range. We also per-
formed two artificial tests. In a test of steady state behavior, coding a long sequence of random bits with
fixed probabilities, the ZP-Coder performed about as well as the QM-Coder, better than the Q15-Coder,
and much better than the ELS-Coder. In a test of early adaptation, coding a long sequence of random
bits with fixed probabilities but reinitializing the encoder index every 50 output bits, the ZP-Coder did
better than the QM-Coder, which was better than the Q15-Coder, which in turn was better than the
ELS-Coder. The ZP-Coder’s decoding speed is faster than that of the QM-Coder, which is in turn faster
than the other two coders. However, the differences in performance between the coders were all small.

5 Optimization of the Compression Rate

DjVu achieves high compression ratios by using new compression algorithms for the mask layer as well
as for the background and foreground layers. Here are some of the novel techniques used by DjVu: the
soft pattern matching algorithm (cf. Section 5.2), used in the JB2 bi-level image compression algorithm
for the mask layer; the sparse set representation of wavelet coefficients used by the IW44 wavelet-based
encoder; a multi-scale successive projections algorithm (cf. Section 5.3), which avoids spending bits to
code the parts of the background image that are covered by foreground objects.

The previous section described the compression format but did not describe the compression algo-
rithms. This section describes the new algorithms used in DjVu such as the foreground /background /mask
separation algorithm, the soft pattern matching algorithm, and the wavelet masking technique.

5.1 The Foreground/Background/Mask Separation

The first step of the DjVu compressor is the separation of the text and line drawings from the pictures
and backgrounds. Some algorithms proposed in the literature address this problem in a top-down fash-
ion, segmenting the document into visually distinct regions, and classifying those regions into text, line
drawings, images or halftones. This approach works well for bi-level documents [Witten et al., 1994] or
color documents with uniform backgrounds where the images are clearly separated from the text.

Other algorithms, following a bottom-up scheme, try to find text based on local features. Typically,
they take advantage of the distinctive characteristics of the text that make it stand out from the back-
ground. For instance, in [Wu et al., 1997], the textual foreground is identified by its specific frequency and
orientations, and its spatial cohesion (characters of the same string have similar height and orientation).

This section describes a multi-scale bicolor clustering algorithm that does not view the task as “seg-
menting” or “finding” text, but rather as a much more general foreground /background classification. The
image is partitioned into square blocks of pixels. A clustering algorithm finds the two dominant colors
within each block. Then, a relaxation algorithm ensures that neighboring blocks assign similar colors to
the foreground and the background. After this phase, each pixel is assigned to the foreground if its color
is closer to the foreground cluster prototype than to the background cluster prototype. A subsequent
phase cleans up and filters foreground components using a variety of criteria.

Despite its simplicity, this algorithm finds text (and many other objects) in complex color images with
a very good accuracy. This algorithm is our first candidate to be used as the foreground/background
separator in the DjVu encoder. The rest of the section gives a more detailed description of the algorithm.

5.1.1 Color Clustering with the K-means algorithm

Counsider the color histogram of a bicolor document image (i.e. an image with a quasi-uniform back-
ground and foreground color). Both the foreground and background color is represented by peaks in the
histogram. There may be a small ridge between the peaks representing the intermediate colors of the
anti-aliased pixels located near the character boundaries.

Extracting the foreground and background color is then easily achieved by running a clustering al-
gorithm on the colors of all image pixels. The following algorithm, based on the well known k-Means
algorithm [MacQueen, 1967] achieves this task.

e Initialize the background color to white and the foreground color to black.

e Iterate over the pixels of the image and decide whether this is a foreground pixel or a background
pixel by comparing the distances between the pixel color and the current foreground and background
colors.

e Update the current foreground (resp. background) color by computing the average color of all the
foreground (resp. background) pixels.

e Repeat steps 2 and 3 until convergence of the foreground and background colors. Although this
convergence occurs very quickly, a careful use of stochastic approximations can make this algorithm
even faster [Bottou and Bengio, 1995].

We have initialized the above algorithm using white as the background color and black as the fore-
ground color. This initialization ensures that the color histogram peak with the highest (resp. lowest)
luminosity will be returned as the background (resp. foreground) color.

There are of course more reliable heuristics for choosing which peak represents the foreground color.
A simple and reliable method selects the highest peak as the background color. The surface of a typical
bicolor document mostly consists of the background color. More sophisticated methods rely on the
topological properties of the two sets of pixels identified by the algorithm (e.g. number of connected
components, average number of holes in the connected components). These methods however are beyond
the scope of this paper.

5.1.2 Block Bicolor Clustering

In reality, typical document images are seldom limited to two colors. The document design and the
lighting conditions induce changes in both the background and foreground colors over the image regions.

An obvious extension of the above algorithm consists in dividing the document image using a regular
grid delimiting small rectangular blocks of pixels. Running the clustering algorithm within each block
produces a pair of colors for each block. We can therefore build two low-resolution images whose pixels
correspond to the cells of our grid. The pixels of the first image (resp. the second image) are painted
with the foreground (resp. background) color of the corresponding block.

This block bicolor clustering algorithm is affected by several problems involving the choice of a block
size and the selection of which peak of each block color histogram represents the background (resp.
foreground) color.

e Blocks should be small enough to capture the foreground color change, for instance, of a red word
in a line of otherwise black text. The size of the smallest characters therefore is a maximal size for
our blocks.

e Such a small block size however increases the number of blocks located entirely outside the text
area. Such blocks contain only background pixels. Blocks may also be located entirely inside the
ink of a big character. Such blocks contain only foreground pixels. The clustering algorithm fails
in both cases to determine a pair of well contrasted foreground and background colors.

e A small block size also ruins the reliable heuristic algorithms for deciding which color histogram
peak represents the actual background (resp. foreground) color. We must revert to choosing the
most luminous color as the background color. This simple choice produces the foreground and
background with quite continuous tones.

5.1.3 Multi-Scale Bicolor Clustering

Instead of considering a single block size, we will now consider several grids of increasing resolution. Each
successive grid delimits blocks whose size is a fraction of the size of the blocks of the previous grid.

Applying the bicolor clustering algorithm on the blocks of the first grid (the grid with the largest
block size) we obtain a foreground and background color for each block in this grid. The blocks of the
next grids are then processed with a slightly modified color clustering algorithm.

This modification introduces a bias in the clustering algorithm by attracting the clusters towards the
foreground and background colors found for the corresponding block of the previous grid. The following
algorithm is a modification of the k-means algorithm described above for that task:

e Locate the corresponding block of the previous grid (i.e. the block of the previous grid containing
the center of the current block). The background and foreground colors of this larger block can be
used for initializing the current background and foreground colors.

e Iterate over the pixels of the image and decide whether this is a foreground pixel or a background
pixel by comparing the distances between the pixel color and the current foreground and background
colors.

e Update the current foreground (resp. background) color by computing a weighted average of (a)
the average colors of all foreground (resp. background) pixels, and (b) the foreground (resp. back-
ground) color found for the corresponding block of the previous grid.

e Repeat steps 2 and 3 until convergence of the foreground and background colors.

Overlooking the effects of the algorithm initialization, this modified algorithm returns the peaks of a
color histogram obtained by computing the weighted average of (a) the color histogram of the current
block, and (b) a color histogram concentrated on the foreground and background colors found for the
corresponding block of the previous grid.

This operation alleviates the small block size problem discussed in the previous section. If the current
block contains only background pixels, for instance, a small proportion of the foreground and background
colors of the larger block will play a significant role. The resulting background color will be the average
color of the pixels of the block. The resulting foreground color will be the foreground color of the larger
block. If however the current block contains pixels representing two nicely contrasted colors, this small
proportion of the colors identified for the larger block will have a negligible impact on the resulting
clusters.

We have obtained good results on a wide range of document images by mixing 80% of the actual color
of the foreground (resp. background) block pixels and 20% of the foreground (resp. background) color
of the larger block.

5.1.4 Filtering and Inverting the Foreground

Our foreground/background/mask separation algorithm attempts to retain as much information as pos-
sible about the original image while quantizing the colors on two levels only: background for the light
colors and foreground for the dark colors. This is not exactly our objective, where the foreground is the
part of the image where a high resolution is necessary for visual understanding.

For example, the separation aglorithm may erroneously put highly-contrasted pieces of pictures in the
foreground. A variety of filters are applied to the resulting foreground image so as to eliminate the most
obvious mistakes. Those filters are based on various heuristics such as the color content of the mark, its
size, or its position relative to other marks. Occasionally, the text segmented by the separation algorithm
will appear inverted in the foreground image (as holes of a large connected component). Another filter
detects those occurences and corrects them.

5.2 Soft Pattern Matching

The JBIG2 standard (cf. Section 4.1) does not specify how the marks are clustered and filtered to
achieve an optimal compression rate. After a brief description of related algorithms, we describe the
"Soft Pattern Matching’ algorithm [Howard, 1997] that we use in the JBIG2 encoder, which comes in two
flavors: lossless and lossy.

5.2.1 Lossy compression based on pattern matching and substitution

Some research has been done on lossy techniques for compressing text images using pattern matching and
substitution [Ascher and Nagy, 1974, Mohiuddin et al., 1984, Holt and Xydeas, 1986, Witten et al., 1992,
Witten et al., 1994]. Conceptually, the idea is to segment the image into individual characters and to
partition the set of characters into equivalence classes, each class ideally containing all the occurrences of
a single letter, digit, or punctuation symbol, and nothing else. Coding the image consists in coding the
bitmap of a representative instance of each equivalence class, and coding the position of each character
instance along with the index of its equivalence class. The equivalence classes and representatives can,
of course, be constructed adaptively. The following is a typical practical organization of the encoder for
such a system. The various pattern matching and substitution (PM&S) methods differ primarily in the
matching technique employed.

Pattern Matching and Substitution Algorithm

Segment image into marks
for each mark do
Find “acceptable match”, if any
if there is a match
Code index of matching mark
else
Code bitmap directly
Add new mark to library
end if
Code mark location as offset
end for

A significant drawback to PM&S methods is the likelihood of substitution errors. To obtain good
compression ratios, the pattern matcher must be aggressive in declaring matches, but as the matching
criteria become less stringent, mismatches inevitably occur. A human reader can often detect and correct
such errors (consciously or unconsciously), but sometimes this is not possible. Part numbers in images
inherently have no context, and the figures ‘5’ and ‘6’ can be problematical even when context is available.
We do not want to include typeface-specific or even alphabet-specific information in a general-purpose

coder, but in most alphabets there are confusion pairs — different alphabet symbols that are similar
according to most easily implemented matching criteria.

5.2.2 Lossless Soft Pattern Matching

The system described in this paper combines features of both the non-progressive JBIG1 encoder and
the PM&S methods. The image is segmented into connected components of black pixels, which we call
marks, following [Witten et al., 1994]. Each pixel of each mark is coded using a JBIG-like coder. We use
pattern matching, but instead of directly substituting the matched character as in the PM&S methods,
we simply use its bitmap to improve the context used by the coder, a technique we call soft pattern
matching.

Our system can be used in lossless or lossy mode. Lossless mode is simpler, and is very similar to that
of Mohiuddin, Rissanen, and Arps [Mohiuddin et al., 1984]. It is illustrated in the following procedure,
which is similar to the generic lossy PM&S method shown above; the only difference (shown in italics)
is that lossy direct substitution of the matched character is replaced by a lossless encoding that uses the
matched character in the coding context.

Soft pattern matching algorithm

Segment image into marks
for each mark do
Find “acceptable match”, if any
if there is a match
Code index of matching mark
Code bitmap using matching mark
Conditionally add new mark to library
else
Code bitmap directly
Add new mark to library
end if
Code mark location as offset
end for

5.2.3 Lossy Soft Pattern Matching

Lossy mode follows the same outline, but requires the implementer to exercise some judgment in deciding
on acceptable levels of distortion. The idea is to allow some pixels to be changed when doing so reduces
the bit count without introducing any “significant” changes to the image.

There are several modifications that can be made to the method described in Section 5.2.2 to increase
the compression ratio by making the compression lossy. All the variations involve preprocessing the
original image followed by lossless coding of the modified image.

The first three modifications are standard techniques that enhance the image while reducing the bit
count as a side effect, while the other two involve preprocessing the marks in a way designed specifically
to reduce the bit count while not degrading their appearance appreciably.

We can obtain some improvement in compression ratio by quantizing the offsets. Unfortunately, the
increase in compression ratio is small, on the order of one percent, and the restored images do not look
as good, so this is not a useful procedure.

We get some improvement by eliminating very small marks that represent noise on the page. In our
implementation we ignore only marks consisting of single black pixels surrounded by eight white pixels.

We get more improvement by smoothing each mark before compressing it and thus before entering
it into the list of potential matching marks. One simple smoothing that can be done is to remove single
protruding pixels (white or black) along mark edges. Smoothing has the effect of standardizing local

10

edge shapes, which improves prediction accuracy and increases the number of matching pixels between
the current mark and potential matching marks. The increase in compression ratio is about ten percent.

We can get a considerable improvement in compression by taking advantage of the best matching
mark described in Section 5.2.2 and applying selective pizel reversal. For every pixel, we obtain a code
length less than one bit if we can predict its color well (i.e., with probability greater than 1/2), and
greater than one bit if we cannot. One mechanism to reduce the code length is to reverse the color
of poorly predicted bits before coding them. To avoid seriously distorting the mark as a whole, we
should limit the reversal to places where it will be imperceptible. We can generally reverse isolated
poorly predicted pixels, and in fact reversing groups of two isolated pixels causes only a minor perceived
difference. In our implementation we use 4-connectivity to decide whether a pixel or group of pixels
is isolated. Unfortunately, the exact color probabilities are not readily available to the encoder during
the preprocessing phase, before the actual coding begins. First, the Z-Coder changes the probabilities
adaptively during coding. Second, there is a cascade effect: changing the color of one pixel changes the
context (and thus the color probability) of up to 4 other pixels in the current mark. The pixel’s color
prediction is approximated by the color of the aligned pixel in the best matching mark. After reversing
the color of the isolated mismatched pixels, we code the mark as in the lossless case.

Finally, we can also apply selective pixel reversal to improve the compression of marks with no accept-
able matching mark. In this case there is no convenient corresponding pixel to serve as an approximation
for the prediction of the current pixel. Instead, we choose as candidates (poorly predicted pixels) those
pixels that differ from both of their two nearest causal neighbors, the one above and the one to the left.
Other pixels are not necessarily well predicted; we just do not know that they are predicted badly enough
that flipping them would be likely to reduce the bit count. Again, candidates are actually reversed only
if they are isolated. After reversing the color of the isolated poorly predicted pixels, we code the mark
as in the lossless case, using the 10-pixel template of Figure 2.

5.3 Wavelet Compression of Partially Masked Images

Section 4.2 briefly introduced our wavelet decomposition algorithm and described how it enables progres-
sive coding and fast, memory-efficient viewing through a browser. In this section, the wavelet coder is
modified to take advantage of the fact that, in our DjVu format, background (resp. foreground) pixels can
be masked by foreground (resp. background) pixels. When we are interested in coding the background,
background pixels are said to be visible whereas foreground pixels are masked.

The visible pixels (i.e. pixels that are not masked) are never affected by the coefficients of wavelets
whose support is entirely located below the mask. Therefore, a simple idea for solving our problem consists
of either (a) skipping these coefficients while coding, or (b) setting them to zero, which is the most code-
efficient value. The first solution saves a few bits, but requires knowing the mask when decoding the
compressed image file. The second solution does not suffer from this constraint: the compressed image
file can be decoded with the usual algorithms, regardless of the mask.

This approach is not practical when the mask (i.e. the set of masked pixels) is composed of small
connected components. Most of the information about masked background pixels is carried by wavelets
whose support is partially masked only. Canceling the coefficient of a partially masked wavelet obviously
changes pixels located outside the mask. The coefficient of other wavelets must be adjusted to compensate
for this effect. We have found empirically that good results are achieved by canceling wavelet coefficients
as soon as half the energy of the wavelet is located below the mask.

The solutions of our problem belong to the intersection of the following sets of images:

e P: images that match the input image on the visible pixels.
e Q: images whose masked wavelet coefficients are zero.

The initial image zg is already an element of set P. As shown in Figure 3, we successively project
this image on sets Q and P.

This sequence is known [Youla and Webb, 1982] to converge toward a point in the intersection of
convex sets P and Q, provided that this intersection is non-empty. The simplest version of the Successive
Projections Algorithm therefore consists of the following steps:

i) Initialize a buffer with the pixel values of the initial image.

11

ii) Perform the wavelet decomposition.
iii) Set the coefficients of all masked wavelets to zero.

iv) Perform the image reconstruction.

v) Reset all visible pixels to their value in the initial image.

vi) Loop to step (i) until convergence is reached.

Convergence is easily monitored by measuring the distance between the visible pixels of the initial
image and the corresponding pixels of the image reconstructed in step (iv).

It is possible to prove that the successive projection method reaches a solution with predetermined
accuracy after a number of iterations proportional to the logarithm of the number of masked pixels.
Moreover, two modification to the successive projection method result in additional speedups:

e Instead of being applied to all the wavelets at once, it can be applied to each scale separately,
proceeding from the fine scales to the coarser ones. This multi-scale successive projection algorithm
has been found to run one order of magnitude faster on realistic images.

e Another speedup can be obtained by applying an overshooting technique widely applied for succes-
sive projections onto convex sets [Youla and Webb, 1982, Sezan and Stark, 1982].

In summary, we have developed a technique for coding the background (or the foreground) image
without wasting bits on background pixels that will be masked by foreground text. This simple and
direct numerical method sets a large number of wavelet coefficients to zero, while transforming the
remaining wavelet coefficients in order to preserve the visible pixels of the background only. The null
coefficients do not use memory and are coded very efficiently by the arithmetic coder.

This section introduced three algorithms designed to optimize the compression rate. The next section
explores more qualitative ways to improve the user experience when accessing DjVu images.

6 Implementation

This section reviews additional features attached to the DjVu format intended to satisfy requirements
from potentials users and content publishers. A key requirement is to be able to browse DjVu documents
through standard applications such as Netscape Communicator or Microsoft Explorer (cf. Section 6.1).

The possibility to retrieve documents using keywords or phrases must be as extensive as possible.
Ideally, we would like scanned documents to be as easy to access as HTML documents. Section 6.2
describes our research effort in Optical Character Recognition (OCR) for that purpose.

6.1 Browsing DjVu Documents

The digital library user experience depends critically on the performance of the browsing tools. Much
more time is spent viewing documents than formulating queries. As a consequence, browsers must provide
very fast response, smooth zooming and scrolling abilities, good color reproduction and sharp pictures.

These requirements put stringent constraints on the browsing software. The full resolution color image
of a page requires about 25 MBytes of memory. We cannot store and process many of these in the browser
without exceeding the memory limits of average desktop computers. However, we want to display such
images seamlessly and allow users to pan around in real time.

We developed a solution called “Multi-threaded two-stage decoding” consisting of the following:

e A first thread, known as the decoding thread, reads bytes on the internet connection and partially
decodes the DjVu stream. This first stage of the decoding process asynchronously updates an
intermediate representation of the page image. This representation is still highly compressed: our
implementation requires less than 2 MBytes of main memory per page.

e A second thread, known as the interactive thread, handles user interaction and repaints the screen
as needed. This thread uses the intermediate representation to reconstruct the pixels corresponding
to the parts of the document that must be redrawn on the screen.

12

Despite the complexity related to thread management and synchronization, this organization provides
many advantages. Since both threads work asynchronously, the browser is able to display images in-
crementally while data is coming in. Memory requirements are limited because the interactive thread
computes image pixels only for regions smaller than the screen size. Scrolling operations are smooth be-
cause they involve just the second stage decoding of the few pixels uncovered by the scrolling operations.

We implemented these ideas in a plug-in for Netscape Navigator and Internet Explorer. Unlike with
many document browsers, each page of a DjVu document is associated with a single URL. Behind the
scenes, the plug-in implements information caching and sharing. This design allows the digital library
designer to set up a navigation interface using well-known Web technologies like HTML, JavaScript, or
Java. This provides more flexibility than other document browsing systems where whole documents are
treated as a single entity, and the viewer handles the navigation between the pages. Figure 4 shows how
a document is displayed while it is downloaded through a 56K modem.

6.2 Indexing

Building an index for a collection of textual images requires performing Document Layout Analysis and
Optical Character Recognition (OCR). However, since in our system the OCR result is used solely for
indexing, and has no effect on the appearance of the document on the user’s screen, the requirements on
the error rate are much less stringent than if the OCR were used to produce an ASCII transcription. Before
the OCR can be performed, the document image must be analyzed and broken down into paragraphs,
lines, and characters.

First, a black and white image is created using the foreground/background/mask separation algorithms
described in Section 5.1 Then a connected component analysis is performed on this image. The result is
a list of blobs (connected black pixels) associated with their coordinates and bounding box sizes.

From this list, large blobs that are obviously not characters are eliminated from the image. Then,
words and lines are found by iteratively grouping together connected components that are close to each
other and approximately horizontally aligned. The procedure iteratively builds a tree data structure where
the leaves contain single connected components, and where the nodes contain clusters of components
grouped into words, lines, and paragraphs.

The lines are then segmented into individual characters using heuristic image-processing techniques.
Multiple segmentation hypotheses are generated and represented as a Directed Acyclic Graph (DAG).
Each candidate segment is sent to a Convolutional Neural Network recognizer[LeCun et al., 1995]. The
recognizer produces one label with an associated likelihood. The range of possible interpretations for all
the possible segmentations is again represented by a DAG. Each path in the DAG corresponds to one
interpretation of one particular segmentation. The accumulated penalty for an interpretation is the sum
of the penalties along the corresponding path. A shortest-path algorithm, such as the Viterbi algorithm,
can be used to extract the best interpretations. The interpretation DAG can be combined with a language
model (represented by a directed graph) to extract legal interpretations. More details on this DAG-based
OCR system can be found in [LeCun et al., 1997].

7 Results and Comparisons with Other Methods.

This section provides experimental compression results on a variety of image. First, comparisons with
JPEG or with a wavelet-only coder are provided on 7 images, either at the same level of readability or the
same file size. Then, we attempt to analyze the improvements in compression quality and performance
brought by each one of the main ideas and algorithms presented in this paper. It is possible to distinguish
three major innovations in DjVu, the foreground/background/mask separation, the use of JB2 for the
mask, and the use of the IW44 wavelet encoder for the foreground and background images (note that we
use for these experiments a version of DjVu where the foreground is coded as an IW44 image rather than
a color attached to each connected component).

13

7.1 Comparisons with JPEG at the Same Level of Readability or the Same
File Size

When it comes to lossy compression of color document images, the most widely used standard is JPEG.
This is the reason why we used it as our comparisons baseline.

We have selected seven images representing typical color documents. These images have been scanned
at 300dpi and 24 bits/pixel from a variety of sources. Figure 5 gives a full comparison between JPEG and
DjVu, with details from each image to assess the readability. Those details do not show the significant
amount of graphics and texture that all these images contain. However, we give the percentage of bits
spent on coding graphics and texture in each image, which ranges from 22:1 to 73:1. When compared
to the original 300dpi raw image, DjVu achieves compression rates ranging from 324:1 to 579:1. Details
about the DjVu encoder are reported in the next 2 subsections.

Compressing JPEG documents at 300 dpi with the lowest possible quality setting (20) yields im-
ages that are of comparable quality as with DjVu. As shown in the “JPEG, 300dpi” column, file sizes
are 5 to 10 times larger than DjVu file sizes. The JPEG encoder we used is CJPEG version 6a, avail-
able on SGI workstations. Slightly better compression ratio could be obtained with more recent, but
proprietary, JPEG encoders. For instance, if we use the “jpeg-wizard” provided by Pegasus Imaging
(http://www.pegasusimaging.com), the compressed JPEG 300dpi documents become, on average, 10%
smaller for exactly the same quality.

For the sake of comparison, we subsampled the document images to 100dpi (with local averaging) and
applied JPEG compression adjusting the quality parameter to produce files sizes similar to those of DjVu.
In the “JPEG, 100dpi” column, the fact that text is hardly readable is not due to the 100dpi subsampling,
but to “ringing” artifacts inherent in low JPEG quality settings. It may be argued that JPEG was
designed for compression rates of 40:1 rather than 400:1, and the fact that we had to downsample the
image to achieve a very high compression rate with JPEG concurs with that remark. In fact, research
on wavelet compression algorithms is in part motivated by this need to have a working standard for
higher compression rates. The performance of IW44 is typical of the current state-of-the-art in wavelet
compression. Unlike JPEG, IW44 was able to compress the non-subsampled image to a file size which is
comparable to DjVu. The “IW44, 300dpi” column shows that IW44 compressed image quality is better
than JPEG, but still far from DjVu. This proves that to represent the textual components of a color
document as a bi-level image is critical for DjVu performance.

Figure 6 shows a comparison between DjVu and “JPEG, 100dpi” on a larger segment of an image.
It is interesting to note that the rendering of the photographs is also better with DjVu that with JPEG,
even though DjVu uses the same 100dpi for the background image. Beside the fact that IW44 is better
than JPEG, DjVu can allocate more bits than JPEG to code these photographs (as no bits are wasted
on coding the textual part of the document with a smooth decomposition).

7.2 Subjective Evaluation of the Foreground/Background/Mask Separation

The foreground/background/mask separation algorithm produces 3 sub-images: (i) the 300dpi bi-level
mask image (ii) the 100dpi background color image and (iii) the 25dpi foreground color image. We can
combine these raw sub-images into a raw multi-layer image However, there is no readily available measure
of quality for this raw multi-layer image. A distortion measure that would weight equally each pixel
would miss the whole purpose of the separation of the pixels into two categories. In fact, an evaluation
of the foreground/background separation algorithm is, by essence, subjective. Two different persons may
disagree about what shall be part of the foreground and what shall be part of the background.

The proof of concept is obtained by running the complete DjVu algorithm: Figure 6 compares DjVu
(which combines the foreground/background separation with the IW44 wavelet encoder) with the IW44
encoder alone (column “IW44, 300dpi”). It clearly demonstrates the benefits of such a separation on the
textual components of the image.

Moreover, the experimental digital library which is available online at http://djvu.research.att.com
shows the performance of the algorithm on a large variety of document types (it is important to stress
that no hand-correction was applied to any of these images). From the feedback of users (extremely
positive so far), we are in the process of gathering typical segmentation errors that result in unpleasing
artifacts. For instance, in the photograph of a person, the eyes or the eyebrows may be classified as

14

Name Description Number | Total Size

Docs (in MBytes)
Brattain handwritten notes 6 95
Cuisine XVII Century book 8 96
Curry book with figures 3 40
Flammarion | XIX Century book 2 37
Forbes magazine ads 15 331
Graham magazine article 2 43
Hobbylobby | mail-order catalog 8 192
WashPost newspaper 3 ol
Maps large map 1 50
Microphone book with figures 9 65
Music sheet music 8 116
Usa US Constitution 5 155

Table 1: Test document images. The third column gives the number of documents per category, the fourth
column reports the total file size used by the raw RGB images

Name description dpi | Subsamp. | Bits/Pix
Mask bi-level mask 300 1 1
Bg color background | 100 3 24
Fg color foreground | 25 12 24

Table 2: Description of the 8 DjVu sub-images

foreground. It is fair to say that, on the data we have collected so far, these segmentation errors are
infrequent.

7.3 Evaluation of JB2 and IW44 on Complex Document Images

Assuming a satisfactory foreground/background/mask separation, we can focus on the separate compres-
sion of the three sub-images. Our test sample, as described in Table 1, is composed of 70 document images
(grouped in 12 categories) that would be problematic to transfer to a “symbolic” form (for instance PDF).
They contain highly textured background (Cuisine, WashPost, Maps, Usa), handwriting (Brattain, Usa),
a mixture of text and images (Forbes, Hobbylobby, Maps), mathematical symbols (Flammarion), hand
drawings (Curry, Microphone. Usa) or music scores (Music).

For each image, our foreground/background separation algorithm produces 3 sub-images, as seen in
Table 2.

Background (resp. foreground) images are generated by taking the page image and using an mask
interpolation algorithm. Masked pixels are replaced by the average color of the neighboring visible pixels.
This averaging is achieved by dividing the page into small blocks of two by two pixels. If a block contains
both masked and visible pixels, the masked pixels are set to the average value of the visible pixels in
the block. The process is then repeated with bigger blocks until all masked pixels have been set with a
suitable interpolation of the visible pixel colors.

The raw mask with 1 bit/pixel is 24 times smaller than the original . The raw background image is
3x3 smaller. The raw foreground image is 12x12 smaller. The raw multi-layer image yields a compression
rate of 6.25:1, as shown in the first step of Figure 7. This number (which depends on the foreground and
background subsampling factors only) is the “raw” compression rate obtained by using the separation
algorithm alone.

On these sub-images, an objective comparison between DjVu and traditional approaches is possible.
We measure, for each image, the gain in compression rate brought by the algorithms used in DjVu when
compared to the best widely available compression standard for this type of image (CCITT-G4 for the
mask, JPEG for the foreground and background).

15

Name CCITT-G4 | Lossless JB2 | Lossy JB2
Brattain 16.2 22.0 22.2
Cuisine 14.9 22.9 29.5
Curry 11.6 19.6 31.0
Flammarion 14.5 28.7 47.6
Forbes 19.5 38.5 53.3
Graham 8.8 23.9 42.4
Hobbylobby 15.2 32.6 47.5
WashPost 9.7 15.6 20.4
Maps 11.5 20.0 24.6
Microphone 10.5 19.9 29.9
Music 18.6 24.3 24.5
Usa 10.4 16.3 17.0

Table 3: Ratios between the total raw file size and the total compressed file size for each document category.
Compression formats are CCITT-G4, lossless and lossy JB2 (c¢f. Section 5.2)

The mask is compressed with JB2, which, as we have seen, comes in 2 flavors, lossless or lossy
compression. Table 3 reports comparative results: compression rates with lossy JB2 are between 1.5 and
5 times higher than with G4. Figure 7 reports the compression rates for the 70 images grouped together:
14:1 with G4 and 30:1 with JB2. This result is all the more interesting as these single-page documents
contain, on average, very few repetitions of similar shapes that JB2 can code efficiently (except Graham,
where the gain with JB2 is the most noticeable). This is also why the gain from lossless JB2 to lossy JB2
is lower than reported in [Howard, 1997].

Note that compared images must have the same quality. This is always true if the compression is
lossless. The change in quality caused by lossy JB2 is only noticeable when zooming on the image.

Comparison between our IW44 wavelet compression and JPEG must be done on images with compa-
rable distortion with respect to the original. As we are only interested in compressing the background
(resp. the foreground), this distortion should be measured on the background (resp. foreground) pix-
els only: we use the average mean square error on these pixels (Masked MSE). We impose that the
background JPEG-compressed image yields the same masked MSE as the IW44-compressed image.

Figure 7 shows that the overall compression ratio for the background sub-images moves from 59:1 if
we use JPEG up to 103:1 if we use IW44, with the successive projection algorithm for partially masked
images (cf. Section 5.3). The mask interpolation algorithm is somehow redundant with this successive
projection algorithm, but ensures a fair comparison with JPEG (which would otherwise spend too many
bits coding for masked pixels)

The successive projection algorithm is indispensable for the compression of the foreground sub-images,
where most of pixels are masked. In this case, the mask interpolation algorithm outputs a very non-smooth
representation of the image (made out of 2x2 squares of various sizes). The compression ratio obtained
with our smooth wavelets is only 31:1 (less that JPEG, which yields 35:1), but goes up to 52:1 with the
successive projection algorithm.

Overall, Figure 7 shows that the novel compression techniques used in DjVu to compress the mask,
foreground and background sub-images compress our typical 23MBytes image into a 59 KBytes DjVu
file. This is about half what we would have obtained by using the foreground/background algorithm with
standard techniques only.

7.4 Evaluation of DjVu on Bi-Level Document Images

We downloaded a standard benchmark for bi-level document images, the OCR Lab 10 sample images
(available at http://imagebiz.com/PaperWeb/ocrlab.htm). This benchmark has been designed to test
various methods to digitize bi-level images, mostly with the help of OCR. On bi-level images, DjVu has
only one layer: the mask coded with JB2. DjVu requires 268 KBytes to code the 10 images: this is one
fourth of what G4 requires (1056 KBytes) and half of what PDF with Acrobat Capture 2.0 requires (498
KBytes).

16

Other experiments show that, on clean bi-level images (obtained, for instance, by converting a
PostScript document into a bitmap), the compression rate with DjVu is between 7 and 8 times bet-
ter than with G4.

In summary, on bi-level and color images, the DjVu compression rate is 4 to 10 times higher than
traditional techniques such as CCITT-G4 or JPEG, at the same level of readability. Every algorithm
used in DjVu, foreground/background separation, JB2 compression for the mask, IW44 compression for
the background, contributes to this gain in performance in a significant way. Wavelet-based techniques,
which are likely to be used in the future JPEG2000 standard, are still very far from DjVu in terms of
readability for a given compression rate, and any progress in these techniques will also benefit DjVu , as
they can be used to encode a background image which accounts for nearly 50% of the DjVu file size.

8 Conclusion

As digital libraries are increasingly becoming a fact of life, they will require a universal standard for
efficient storage, retrieval and transmission of high-quality document images. The work described in this
paper is a substantial step towards meeting this need, by proposing a highly efficient compression format
(DjVu), together with a browser that enables fast internet access. With the same level of legibility (300
dots per inch), DjVu achieves compression ratios 5 to 10 times higher than JPEG.

To achieve this, novel algorithms that address a wide variety of classical image processing problems
have been proposed. Multi-scale bicolor clustering performs a foreground/background/mask separation
that is more general than the standard text/image segmentation. With the soft pattern matching al-
gorithms, our lossy JBIG2 compression ratios are on average twice those of lossless JBIG1, the best
existing standard for bi-level images. The ZP-coder is faster than other approximate arithmetic coders,
and yields, on average, better compression. The multi-scale successive projections algorithm for wavelet
decomposition of partially masked images significantly reduces the compressed file sizes and can handle
arbitrarily complex masks with reasonable computational requirements. All these algorithms have been
integrated into a standalone DjVu encoder.

A DjVu plug-in is freely available for download at http://djvu.research.att.com. This site con-
tains an experimental “Digital Library” with documents from various origins. The DjVu encoder is also
available for research and evaluation purposes.

It is possible to further optimize the compression rate. A version of DjVu that encodes several
pages together will be able to share JBIG2 shape dictionaries between pages. Problems such as fore-
ground /background /mask separation or connected component filtering are being rephrased in terms of
compression rate optimization.

The addition of text layout analysis and optical character recognition (OCR) will make it possible to
index and edit text extracted from DjVu-encoded documents.

References

[Adelson et al., 1987] Adelson, E. H., Simoncelli, E., and Hingorani, R. (1987). Orthogonal pyramid
transform for image coding. In Proc. SPIE vol 845: Visual Communication and Image Processing II.,
pages 50-58, Cambridge, MA.

[Ascher and Nagy, 1974] Ascher, R. N. and Nagy, G. (1974). A means for achieving a high degree of
compaction on scan-digitized printed text. IEEE Trans. Comput., C-23:1174-1179.

[Bottou and Bengio, 1995] Bottou, L. and Bengio, Y. (1995). Convergence properties of the Kmeans
algorithm. In Advances in Neural Information Processing Systems, volume 7, Denver. MIT Press.

[Bottou et al., 1998] Bottou, L., Howard, P. G., and Bengio, Y. (1998). The Z-coder adaptive binary
coder. In Proceedings of IEEE Data Compression Conference, pages 13—22, Snowbird, UT.

[Golomb, 1966] Golomb, S. W. (1966). Run-length encodings. IEEE Trans. Inform Theory, IT-12:399—
401.

17

[Holt and Xydeas, 1986] Holt, M. J. and Xydeas, C. S. (1986). Recent developments in image data
compression for digital facsimile. ICL Technical Journal.

[Howard, 1997] Howard, P. G. (1997). Text image compression using soft pattern matching. Computer
Journal, 40(2/3):146-156.

[Howard and Vitter, 1994] Howard, P. G. and Vitter, J. S. (1994). Arithmetic coding for data compres-
sion. Proceedings of the IEEE, 82:857-865.

[JBIG, 1993] JBIG (1993). Progressive bi-level image compression. ITU recommendation T.82, ISO/IEC
International Standard 11544.

[LeCun et al., 1997] LeCun, Y., Bottou, L., , and Bengio, Y. (1997). Reading checks with multilayer
graph transformer networks. In Proceedings of IEEE Int. Conference on Acoustics, Speech and Signal
Processing ICASSP’97.

[LeCun et al., 1995] LeCun, Y., Jackel, L. D., Bottou, L., Brunot, A., Cortes, C., Denker, J. S., Drucker,
H., Guyon, I., Muller, U. A., Sackinger, E., Simard, P., and Vapnik, V. (1995). Comparison of learning
algorithms for handwritten digit recognition. In Fogelman, F. and Gallinari, P., editors, International
Conference on Artificial Neural Networks, pages 53—60, Paris.

[Lesk, 1997] Lesk, M. (1997). Practical Digital Libraries: Books, Bytes and Bucks. Morgan Kaufmann.

[MacQueen, 1967] MacQueen, J. (1967). Some methods for classification and analysis of multivariate
observations. In LeCam, L. M. and Neyman, J., editors, Proceedings of the Fifth Berkeley Symposium
on Mathematics, Statistics, and Probabilities, volume 1, pages 281-297, Berkeley and Los Angeles,
(Calif). University of California Press.

[Mohiuddin et al., 1984] Mohiuddin, K., Rissanen, J. J., and Arps, R. (1984). Lossless binary image
compression based on pattern matching. In Proc. Intl. Conf. on Computers, Systems, and Signal
Processing, Bangalore.

[MRC, 1997] MRC (1997). Mixed rater content (MRC) mode. ITU Recommendation T.44.

[Pennebaker et al., 1988] Pennebaker, W. B., Mitchell, J. L., Langdon, G. G., and Arps, R. B. (1988).
An overview of the basic principles of the Q-coder adaptive arithmetic binary coder. IBM Journal of
Research and Development, 32(6):717-726.

[Phelps and Wilensky, 1996] Phelps, T. and Wilensky, R. (1996). Towards active, extensible, networked
documents: Multivalent architecture and applications. In Proceedings of the 1st ACM International
Conference on Digital Libraries, pages 100-108.

[Said and Pearlman, 1996] Said, A. and Pearlman, W. A. (1996). A new, fast, and efficient image codec
based on set partitioning in hierarchical trees. IEEE Transactions on Circuits and Systems for Video
Technology, 6(3):243-250.

[Sezan and Stark, 1982] Sezan, M. I. and Stark, H. (1982). Image restoration by the method of convex
projections: Part 2 — applications and numerical results. IEEFE Transactions on Medical Imaging,
MI-1(2):95-101.

[Shapiro, 1993] Shapiro, J. M. (1993). Embedded image coding using zerotrees of wavelets coefficients.
IEEFE Transactions on Signal Processing, 41:3445-3462.

[Story et al., 1992] Story, G., O’Gorman, L., Fox, D., Shaper, L., and Jagadish, H. (1992). The Right-
Pages image-based electronic library for alerting and browsing. IEEE Computer, 25(9):17—26.

[Sweldens, 1996] Sweldens, W. (1996). The lifting scheme: A custom-design construction of biorthogonal
wavelets. Journal of Applied Computing and Harmonic Analysis, 3:186-200.

[Withers, 1996] Withers, W. D. (1996). A rapid entropy-coding algorithm. Technical report, Pegasus
Imaging Corporation. URL ftp://www.pegasusimaging.com/pub/ELSCODER.PDF.

18

[Witten et al., 1992] Witten, I. H., Bell, T. C., Harrison, M. E., James, M. L., and Moffat, A. (1992). Tex-
tual image compression. In Storer, J. A. and Cohn, M., editors, Proc. Data Compression Conference,
pages 42-51, Snowbird, Utah.

[Witten et al., 1994] Witten, I. H., Moffat, A., and Bell, T. C. (1994). Managing Gigabytes: Compressing
and Indexing Documents and Images. Van Nostrand Reinhold, New York.

[Witten et al., 1987] Witten, I. H., Neal, R. M., and Cleary, J. G. (1987). Arithmetic coding for data
compression. Communications of the ACM, 30(6):520-540.

[Wu et al., 1997] Wu, V., Manmatha, R., and Riseman, E. (1997). Finding text in images. In Proceedings
of the 2nd ACM International Conference on Digital Libraries (DL’97), Lausanne.

[Youla and Webb, 1982] Youla, D. C. and Webb, H. (1982). Image restoration by the method of convex
projections: Part 1 — theory. IEEE Transactions on Medical Imaging, MI-1(2):81-84.

19

Tatal seguder price - BLTT
Oirdar antire outhit - save 34532 - pay $385,.00
T b et il (e s — O "R R

e ——————— e ———
VISIT OUR SHOWROOM!

i b oy 150, i L. Fes b il tranha 1
F vy b [Lo hlhhﬂ—h:ﬂgh‘l‘dm-
[] pp——— haraies Ty i D)
e lrﬂ.- b s rasecd crnames m
R 0 R il

Visit our

Showroam:
e
R

i
of el

VISIT OUR WER PAGE
| q————

Linns L5 T

CPGED— HOBBY LORGY NTESNATICRAL . - 3514 FAENKLIM PRE CIRCLE - DREVTWODD TR IHIT

Figure 1: Ezample of color document (hobby002)

Figure 2: JBIG1 template. The numbered pixels are used as the context for coding of the pixel marked
‘P,

Images matching the

/ target image outside the mask.

/ X Xi+1 {Q}
{P}

Images whose wavel et coefficients
are zero when the wavelet energy is
substantially located below the mask.

Figure 3: Successive projections converge towards a point in the intersection of two convexr subspaces
representing (a) images matching the initial image outside the mask, and (b) images whose masked
wavelet coefficients are zero.

21

eatedly, charg- e —
.airplane is an

ne because of l A£

istruction, very Sy -

mmend: any 4

rop GP0OB040, nicad pack7 shaft adapte
HL..IEGBBorEURBSS.apEtkDp back after t:

Nicad Battery Spee«

§

BO71400R 8.4 Volt, 1400 HLJE30B J

-

SCR Nicad %cénémnen
Bamw Lol Lol LTIt m—m LI oL
3.1sec/23k: the mask (text, 23K) is

loaded.

eatedly, charg-

.airplane is an

ne because of

istruction, WIX

mmm icad 7 shaft adapte
.n

TP IE508 of EURBS0, prop back aftert

Nicad Battery

HLJE30B J
mmsﬁ Volt, 1400 ¢ troller
Battery $48.00 BEC .

9.4sec/67K: Loading is finished.

rop GP0B040, nicad 7 shaft adapte
HLJE308 orEU back after

400 Volt, HLJE30B J
ﬂg Nll:.:{ds-‘ w Controller:
mry N T S m BEC CLTTTTe Ty

4.8sec/35K: The background is still
blurred.

35K are necessary for this background
image.

Figure 4: Downloading through a 56K modem: progressive decompression of text first, followed by the

background at increasing quality(detail of Figure 1)

JPEG, JPEG, W44,

Image De- Raw image 300dpi, 100dpi, 300dpi, DjVu
scription detail quality 20 size=DjVu size=DjVu compressed
Magazine ’ ' | I he
Add 1 _i A .
% image= 56 L. S = i Wy
ads-freehand-300 20640K 292K 70:1 50K 412:1 61K 338:1 52K 396:1
Brattain
Notebook
% image= 22
brattain-0001 9534K 116K 82:1 17K 560:1 20K 476:1 19K 501:1
Scientific
Article |
% image= 46] L
graham-001 22013K 383K 57:1 41K 536:1 43K 511:1 38K 579:1
Newspaper
Article
% image= 50
lrr-wpost-1 12990K 250K 51:1 38K 341:1 42K 309:1 40K 324:1
Cross-
Section of
Jupiter L
% image= 73
planets—jupiter 24405K 284K 85:1 47K 519:1 52K 469:1 47K 519:1
XVIIIth
Century
book
% image= 45
cuisine-p006 12128K 206K 58:1 35K 346:1 39K 310:1 37K 327:1
US First
Amend-
ment
% image= 30
usa-amendl 31059K 388K 80:1 77K 403:1 78K 398:1 73K 425:1

Figure 5: Compression results for seven selected images with 4 compression formats. Raw applies no
compression. JPEG-100dpi: the image is low-pass filtered and subsampled to 100dpi, and then compressed
with JPEG while adjusting the quality parameter so as to obtain a file approzimately the same size as the
DjVu . The “% image” value corresponds to the percentage of bits required to code for the background.
Each column shows the same selected detail of the image. To make selection as objective as possible, when
possible, the first occurrence of the word “the” was chosen. The two numbers under each image are the
file size in kilobytes and the compression ratio (with respect to the raw file size).

2

w

R) L L e P —— LA A AT T RE SR FWE mEl T T

the easy nicad It's all baisa | the easy nicad swap. It's all balsa :
(anly about 47 oz. ﬁ-ﬂh’ aquip Jight (only about 47 oz. fully equip
nel radko (use 3 charinels), GF channel radio (use 3 channels), G

cells of 1400mah size BOT1400R, cells of 1400mah size BO71400R,

Radio Motor/ Radio Motor/
" l

‘ 1

&1152 S
*ITHEEH HITM Motor & 81 JTHRS22 HiTec Motor & 8»

‘ocus 4 FM Radio IngProp .. socus 4 FM Radio ing Prop...
system ... $129.00 System ... $129.00

JPEG at 100dpi only. DjVu.

GR1162 S

Figure 6: Comparison of JPEG at 100dpi (left) with quality factor 30% and DjVu (right). The images
are cropped from hobby002. The file sizes are 82 KBytes for JPEG and 67 KBytes for DjVu

24

CCITT-G4 14:1

Raw
Image
23,000K

Standard

Compression
116K

_Fg 160K JPEG 35:1
No
compression

JPEG 59:1
6.25:1

\% DjVu
4

Fg 3K compression
59K

Figure 7: For a given foreground/background separation, this figure compares, for the three sub-images,
the following configurations: (i) no compression, (ii) standard compression techniques such as JPEG and
CCITT-G/ and (iii) compression techniques used in DjVu. Assuming we start from a 23MBytes raw

document image, the average size we can expect for each sub-image is reported in the corresponding block.
The arrows show the techniques used and the compression rates obtained.

25

