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Abstract

Books and magazines often contain pages containing audacious mixtures of color images
and text. Our problem consists in coding the background colors of a such documents without
wasting bits on background pixels that will be masked by foreground text.

This paper presents a numerical method for achieving such a result. This wavelet technique
described in this paper significantly reduces the compressed file sizes. It can handle arbitrarily
complex masks with reasonable computational requirements. This direct method does not
require the prior computation of a mask-dependent wavelet basis.

1 Introduction

Books and magazines often contain pages containing audacious mixtures of color images and text.
Our reference application consists in coding the background colors of a such documents without
wasting bits on background pixels that will be masked by foreground text.

Some wavelet image compression schemes control bit allocation using an a priori classification of
image blocks (Jafarkhani and Farvardin, 1997). This procedure however is hardly applicable to our
problem, since blocks are usually larger than the detailed shape of typical foreground characters.
Other approaches consist of generating a suitable wavelet basis (Apostolopoulos, 1997) before
performing the wavelet decomposition.

We present in this paper a simple and direct numerical method for setting a large number of wavelet
coefficients to zero, while transforming the remaining wavelet coefficients in order to preserve the
pixels located outside the mask. Suitable coding schemes then take advantage of these canceled
coefficients. The next section exposes the principle of our iterative method. The following sections
discusses its convergence and describes an improved method. Empirical results are presented in
the last section.



2 Principle

2.1 Wavelet Image Compression

Multi-resolution wavelet decomposition is one of the most efficient schemes for coding color images.
These schemes involve several operations: color space transform, image decomposition, coefficient
quantization and coefficient coding.

The image is first represented as a linear combination of locally supported wavelets. This linear

combination can be written as:
Aw ==z (1)

where w is a vector of wavelet coefficients, x is a vector of pixel values, and A is a square matrix
whose columns represent the wavelet basis. Matrix A usually describes an orthogonal or nearly
orthogonal transformation. Efficient multi-scale algorithms (Mallat, 1989; Sweldens, 1996) perform
image decomposition (i.e. computing A~1z) and image reconstruction (i.e. computing Aw) in time
proportional to the number of pixels in the image.

The image local smoothness ensures that the distribution of the wavelet coefficients is sharply
concentrated around zero. High compression efficiency is achieved using quantization and coding
schemes that take advantage of this peaked distribution (Adelson, Simoncelli and Hingorani, 1987;
Shapiro, 1993).

2.2 Partial Wavelet Masking

The visible pixels (i.e. pixels that are not masked) are never affected by the coefficients of wavelets
whose support is entirely located below the mask. Therefore, a simple idea for solving our problem
consists in either (a) skipping these coefficient while coding, or (b) setting them to zero, which is
the most code-efficient value. The first solution saves a few bits, but requires to know the mask
when decoding the compressed image file. The second solution does not suffer from this constraint:
the compressed image file can be decoded with the usual algorithms, regardless of the mask.

This approach is unpractical when the mask (i.e. the set of masked pixels) is composed of small
connected components. Efficient wavelet compression requires smooth wavelets whose smallest
support is typically a dozen pixels wide. The backgrounds of our reference documents are masked
by printed text. Very few wavelets will be entirely masked by the ink of typical printed characters.

Most of the information about masked background pixels is carried by wavelets whose support is
partially masked only. Canceling the coefficient of a partially masked wavelet obviously changes
pixels located outside the mask. The coefficient of other wavelets must be adjusted to compensate
for this effect. The adjusted coefficients represent an image whose visible pixels exactly match
the corresponding pixels of the target image. The masked pixels however can be different. Their
value is simply a code-efficient interpolation of the visible pixels.

Reordering the pixel vector x and the wavelet coefficient vector w allows a block-decomposition

of equation (1) : , ,
e (59)(2)(2) -

where z'’ represents the masked pixels, z’ represents the visible pixels, w" represents the wavelet
coefficients to cancel, and w' represents the remaining wavelet coefficients. We are seeking adjusted



wavelet coefficients which are the solutions of equation :

Bw' = 2
S 3

This equation has solutions if the rank of the rectangular matrix B is equal to the number of
remaining (i.e. non canceled) wavelet coefficients. This problem will be addressed in section 3.1.
The rank condition however implies that the number of canceled wavelet coefficients must be
smaller than the number of masked pixels.

Given a mask and a wavelet decomposition, we must therefore choose which wavelet coefficients
(called the masked coefficients) will be canceled. The choice of the masked coefficients impacts
the resulting file size. Canceling a wavelet whose energy is significantly located outside the mask
requires a lot of adjustments on the remaining coefficients. These adjustments are likely to use
coefficients that would be null otherwise. We have empirically found that good results are achieved
by canceling wavelet coefficients as soon as half the energy of the wavelet is located below the mask.

2.3 Successive Projections

Once we have selected the set of masked coefficients, we can proceed and solve equation (3). There
are many techniques for solving sparse linear systems. There is however a method which relies
only on the efficient wavelet decomposition and reconstruction algorithms.

Every image can be represented in pixel coordinates (i.e. a collection of pixel values) or in wavelet
coordinates (i.e. a collection of wavelet coefficients). The coordinate transformation is described
by matrix A. The solutions of our problem belong to the intersection of the following sets of
images:

e The set P of all images whose pixels located outside the mask are equal to the corresponding
pixels in the image being compressed. This set is a closed convex affine subspace of the image
space.

e The set Q of all images whose wavelet representation contains zeroes for all masked coeffi-
cients. This set also is a closed convex affine subspace of the image space.

Let P (respectively ) be the projection operator on set P (respectively Q). The initial image xg
is already an element of set P. As shown in figure 1, we successively project this image on sets Q

and P:
1‘; = Qux; € Q (4)
i1 = Pzi=PQz; €7P

This sequence is known (Youla and Webb, 1982) to converge toward a point in the intersection
of convex sets P and Q, provided that this intersection is non empty. The simplest version of
the Successive Projections Algorithm (Chen, Civanlar and Haskell, 1994) therefore consists of the
following steps:

i) Initialize a buffer with the pixel values of the initial image.
ii) Perform the wavelet decomposition.
i44) Set all masked wavelet coefficients to zero (projection Q).

iv) Perform the image reconstruction.
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Figure 1: Successive projections converge towards a point in the intersection of two convex sub-
spaces representing (a) images matching the initial image outside the mask, and (b) images whose
masked wavelet coefficients are zero.

v) Reset all visible pixels to their value in the initial image (projection P).
vi) Loop to step (%i) until convergence is reached.

Convergence is easily monitored by measuring the distance between the visible pixels of the initial
image and the corresponding pixels of the image reconstructed in step (iv).

3 Convergence Issues

3.1 Convergence Speed

This section presents a bound on the convergence speed and a criterion on the existence of a
solution. The bound depends only on the set of masked pixels and the set of masked coefficients.
This bound therefore is a useful element for selecting the masked coefficients.

Since zj,; = Q(:41) is the orthogonal projection of z;;1 on Q, we have (cf. figure 1) :

lzirs =24l = oin = 2 |* + ot = il > oo — 2 || (5)

The contraction ratio is therefore bounded by :

2
lzivs = @ill” _ llwiss — il
12 < 12 (6)
|z — =i s — zi]]
Vector z; — z; = x; — Q(x;) belongs the linear subspace orthogonal to Q. It can be written as

a linear combination of the wavelets e; corresponding the the masked coefficients. We have then
the following results :

Ti—x = Zajej (7)
J



T — @ =@ —xp— Plei— o)) = Y aj(e; — P(e))) (8)
i

Vector e; — P(e;) represents the part of wavelet e; which is not located below the mask. These
clipped wavelets are completely defined by the mask and by the set of masked coefficients. Com-
bining results (6), (7) and (8) provides a bound A on the contraction ratio. This bound depends
only on the set of masked pixels and the set of masked coefficients.

)
M < sup Y ajle; = Pley) || = A )
l|z; — ]| ||Z_ajej||:1 j

The right hand side of this inequality is easily interpretable. Adding a unit vector to the masked
coefficients will cause a perturbation on the visible pixels. The norm of this perturbation will
be less than lambda. Quantity A naturally depends on the energy and shape of the part of the
masked wavelets which overlaps visible pixels.

An argument similar to (5) ensures that ||z;+1 — ;|| < ||z; — #}|| This result and inequality (9)
provide bounds on the convergence speed :

lzisr — @il < llws =il < A Jlzo — gl (10)

Condition A < 1 therefore is a sufficient condition for ensuring that both sequences (z;) € P and
(xf) € Q converge geometrically to a same point z*. This limit belongs to both P and Q because
these sets are closed sets.

This result defines a remarkably fast convergence. The successive projection method reaches a
solution with a predetermined accuracy after a number of iterations proportional to the logarithm
of the number N, of masked pixels only, as shown by equation (10) and the following bound :

leo — 2|l < llzg — | + llzh — &*|| < 2 lao — 2| < 2/ N

As a comparison, solving equation (3) with a typical sparse linear system technique, like the
conjugate gradients method, would require a number of iterations proportional to the number N,
of visible pixels!.

3.2 Multi-scale Successive Projections

This section shows how the multi-scale nature of the wavelet decomposition algorithm provides a
way to improve the value of A and therefore improve the convergence speed.

Developing the norm of the pixel perturbation term in equation (9) shows how quantity A depends
on the shapes and the scales of the set of masked wavelets :

2

> aile; = Pley)) >_aj lles = Ple)l” (1)

+ > ajak (e — Ple;))-(ex — Plex)) (12)

i#k

1 The execution time of one iteration is proportional to the number of pixels in the case of successive projections,
and to the number of visible pixels in the case of conjugate gradients.
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Figure 2: Multi-scale wavelet decomposition works by repetitively applying a low-pass filter(L)
which returns an image with half resolution, and a complementary high pass filter, which returns
all wavelet coefficients at the current scale.

The first terms of the sum (11) depends on the norm of the clipped wavelets e; — P(e;). Since the
wavelets e; are normalized, and since we cancel only the wavelets whose support is substantially
masked, the norm of the clipped wavelets is a quite small number (typically smaller than 1/2).
The second terms (12) depend on the overlaps between clipped wavelets. Clipped wavelets of
similar scale (i.e. wavelets whose support has identical size) are not likely generate much overlap,
because they are designed to cover efficiently the pixel space. Large scale wavelets however overlap
many small scale wavelets. These overlaps drive up the value of .

Multi-scale wavelet decomposition algorithms factor the decomposition (i.e. multiplying the image
pixel by matrix A~!) into a sequence of identical stages (cf. figure 2). Each stage consists in
applying a low pass linear filter and a high pass linear filter to the input image. The low pass
filter returns a half resolution image which is provided as input to the next stage. The high pass
filter returns all the coefficients of wavelets a particular scale. The input image of each stage can
be reconstructed by combining the output of both filters.

Since all the wavelets coefficients for the finest scale are produced by the first stage, we can cancel
all masked coefficients for this scale using the Successive Projections Algorithm (cf. section 2.3)
with a one stage decomposition only. This operation outputs a half-resolution image and a first
set, of coefficients fulfilling the masking conditions. The visible pixels of the initial image can be
reconstructed by combining these outputs with the usual algorithms. We can then process the
wavelet coefficients for the coarser scales by repeating this operation for each successive stage in
the wavelet transform. In other words, the Multi-scale Successive Projections Algorithm consists
of the following operations:

i) Initialize the current image with the pixels of the image being compressed. Initialize the
current mask with the set of pixels that will be masked by foreground objects.

it) Apply the Successive Projections Algorithm (cf. section 2.3) on the current image, using a
one-stage wavelet decomposition only.

iii) Set the current image to the half resolution image returned by the low-pass wavelet filter.
Set the current mask to a half resolution mask in which a pixel is masked if the corresponding
pixels in the previous mask were masked.

iv) Go to step (@) until all stages of the multi-scale wavelet decomposition have been processed.

This algorithm has been found to run one order of magnitude faster on realistic images than the
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Figure 3: In a high dimensional spaces (like image spaces), overshooting the projections usually
leads to faster convergence.

simple Successive Projections Algorithms (cf. section 2.3). This improvement is explained by the
smaller values of A and by the lower complexity of the projection operations (each stage of the
algorithm processes an image whose size is half the size of the previous image).

3.3 Overshooting

Another speedup can be obtained by applying an overshooting technique widely applied for suc-
cessive projections onto convex sets (Youla and Webb, 1982; Sezan and H., 1982). Instead of
successive projections, the overshooting technique uses the following sequences (cf. figure 3):

wp =z y(Qwi) —wi)
zipn = @ +v(P(z}) — ) (13)

where 0 < v < 2. Choosing v = 1 gives the Successive Projections Algorithms as introduced
in section 2.3. There are strong evidences (Simard and Mailloux, 1988) that, in high dimension
spaces, choosing a higher value of 7 leads to faster convergence. In our implementation, choosing
v = 3/2 in the Multi-scale Successive Projections Approximation has divided the convergence time
by three.

4 Empirical Results

Experiments have been carried out using several document images (cf. figure 5) representing pages
of magazines and ancient books. Foreground objects are located using a thresholding technique.

Background images are generated by taking the page image and replacing the masked pixels by
the average color of the neighboring visible pixels. This averaging is achieved by dividing the page
into small blocks of four by four pixels. If a block contains both masked and visible pixels, the
masked pixels are set to the average value of the visible pixels in the block. The process is then
repeated with bigger blocks until all masked pixels have been set with a suitable interpolation of
the visible pixel colors.

These interpolated background images are then processed using the Multi-scale Successive Projec-
tions Algorithm (cf. section 3.2). The wavelet decomposition is a five stage lifting decomposition



image compressed file size
name size % masked | regular interpolated masked
hobby001  825x1074 19% 131359 50770 39657
hobby002  825x1074 19% 140100 64905 52425
metric 744x1074 26% 169758 34756 25899
missel 610x429 40% 64359 29550 18777
plugin 757x1035 32% 189075 40642 31065

Figure 4: Compressed file sizes on five test images.

using Deslauriers-Dubuc interpolating wavelets with four analyzing moments and four vanishing
moments (Sweldens, 1996).

The resulting wavelet coefficients (including the zeroes generated by the masking process) are then
coded using our local embedded coding scheme. The design of this scheme minimizes the decoding
memory requirements. Its coding properties however are comparable to the zero-trees (Shapiro,
1993) or the set-partitioning (Said and Pearlman, 1996) schemes.

Figure 4 reports results on five images. The third column indicates the proportion of masked
pixels. The fourth and fifth indicate the file sizes obtained by compressing the raw image and the
interpolated background respectively. The last column contains the file size obtained using the
wavelet masking technique described in this paper. All three figures were obtained using the same
conservative coefficient quantification parameters.

As expected, the compressed file sizes for the interpolated images are much smaller than the
compressed file sizes for the raw images. The character shapes indeed represent most of the
information on a document page. The wavelet masking technique further reduces the compressed
file sizes. Figure 5 shows that this technique results in a smoother interpolation of the masked
pixels. This smoothing can be interpreted as a code-efficient interpolation.

Our SGI workstations need about 15 seconds to perform the compression with partial wavelet
magking of the biggest images (hobby001 and hobby002). This is about three times the time
required for a regular compression. The decompression times are not affected by the masking
procedure.

5 Conclusion

The wavelet masking technique described in this paper significantly reduces the compressed file
sizes. It can handle arbitrarily complex masks with reasonable computational requirements. There
is no need to generate a wavelet basis whose support is restricted to the visible pixels.

The wavelet masking technique is currently used as one of the building blocks of a more general
scheme for compressing full resolution color document images. This scheme, named Deja Vu, will
be described in a forthcoming paper. Yet the utilization of the wavelet masking technique has
resulted in significantly smaller files and greatly improved image quality.
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Figure 5: The wavelet masking technique is used to compress the background colors of an image
hobby002 (top-left). The mask (top-right) identifies the pizels masked by foreground objects. The
interpolated background (bottom-left) is computed by replacing the masked pizels by the average
color of neighboring visible pizels. Compressing this image while taking the mask into account (as
explained in this paper) produces a smaller file (bottom-right) and a smoother interpolation.
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