
The Z�Coder Adaptive Binary Coder

�extended abstract�

L�eon BottouA� Paul G� HowardA� and Yoshua BengioA�M

AAT�T Labs � Research� Red Bank NJ ������ ����
MUniversit�e de Montr�eal� Montr�eal PQ Canada H�C �J�

Abstract

We present the Z�Coder� a new adaptive data compression coder for coding
binary data� The Z�Coder is derived from the Golomb run�length coder� and
retains most of the speed and simplicity of the earlier coder� The Z�Coder
can also be thought of as a multiplication�free approximate arithmetic coder�
showing the close relationship between run�length coding and arithmetic cod�
ing� The Z�Coder improves upon existing arithmetic coders by its speed and
its principled design� In this paper we present a derivation of the Z�Coder as
well as details of the construction of its adaptive probability estimation table�

� Introduction

Statistical compressors operate by reducing data to a sequence of discrete �events�	
Each event that must be coded is drawn from a set of possible events� each having
a probability associated with it� The major issues involved in designing a statistical
compressor are modeling
 mapping the data to a probabilistic model by choosing a
set of possible contexts� probability estimation
 estimating the probabilities asso�
ciated with each possible event in each context� and coding
 converting the actual
events to bits in the codestream in a way that allows a decoder to recover the orig�
inal sequence of events� Probability estimation is properly part of modeling� but in
data compression work it is usually kept separate� or even coupled to coding� The
goal of any data compression system is to minimize the number of bits required to
represent the data while at the same time attempting to satisfy a number of prac�
tical constraints� Some of the more important considerations besides compression
e�ciency are encoding and decoding speed and latency� ease of implementation in
software� hardware� or both� e�cient use of memory� and freedom from intellectual
property restrictions� In this paper we present a new adaptive binary coder named
the Z�Coder� Besides providing close to theoretically optimal compression e�ciency�
it scores well on the secondary issues�

In Section
 we develop the Z�Coder as a generalization of the Golomb coder ����
a simple� e�ective� and popular run�length coder� To do so we �rst provide a careful
and detailed explanation of the Golomb coder� casting it in the terms used in our
description of the Z�Coder� We show why the Golomb coder is so fast and easy
to implement� but we also show how its compression e�ciency might be improved�
Then we make relatively minor adjustments to the Golomb coder to arrive at the
Z�Coder� the Z�Coder retains the most useful properties of the Golomb coder� speed
and simplicity�

�

The Z�Coder can also be seen to be similar to the Q�Coder ��� and QM�Coder ���
approximate arithmetic coders� in that it is a multiplication�free binary coder with in�
cremental output and adaptive probability estimation coupled to the coding process�
like the other coders in this class� it does not directly address modeling� Like them�
it uses tables for its adaptive probability estimation� as we describe in Section ��
However� the Z�Coder improves on the Q�Coder and its descendents in a number of
ways
 �� a better approximation for proportional interval division�
� a very fast �fast
path	� �� a principled approach to increment computation in the probability estima�
tion tables� and �� a principled approach to fast early adaptation in the probability
estimation tables�

� Development of the Z�Coder

Golomb coding� The Z�Coder is a generalization of Golomb coding� a method of
coding runs of binary symbols� We consider the Golomb code with parameter m�
in this discussion the parameter is taken to be a power of
� although with minor
adjustments it may take on any positive integer value� We use a Golomb code to
code a run of r consecutive occurrences of a more probable symbol �MPS� followed
by a single occurrence of a less probable symbol �LPS�� The codeword for such a run
has two parts� The �rst part is the value of br�mc coded as a unary number� that
is� br�mc �s followed by a �� The second part is the value of r �modm�� coded as
an ordinary �log�m��bit binary number� Successive runs are coded exactly the same
way�

Bin �lling� We can think of Golomb encoding as an exercise in �lling bins� Imagine
that we have a conveyor belt supplying small objects� called MPS�objects� each of
approximately the same size� Runs of MPS�objects are occasionally interrupted by a
large object� called an LPS�object� At a given point in time� the conveyor belt will
supply either an MPS�object of size � log� pMPS� which is smaller than the size of a
bin� or an LPS�object of size � log���� pMPS�� which is larger than the size of a bin�
We may interpret pMPS as the probability that the object is an MPS�object� although
the probability is no longer relevant after we have �xed the Golomb parameter m�

We are trying to code the number of MPS�objects in each run� We have bins that
can hold m MPS�objects each� each bin has m slots� each of size � � ��m� and the
MPS�objects can be forced to expand or contract to exactly �ll the slots�

We start �lling bins with MPS�objects� When a bin is full� we output �� it is no
longer necessary to consider that bin� When an LPS�object appears� we output ��
and then output a �log�m��bit binary number to indicate how many MPS�objects
were in the last partially �lled bin� The LPS�object �lls the remainder of that bin as
well as log�m other entire bins� The initial choice of the value of m determines both
the number of MPS�objects that can �t into one bin and the number of bins required
for an LPS�object�

In this interpretation� the bins that are �lled withMPS�objects correspond exactly
to the � bits in the unary part of the Golomb code� The partially �lled bin corresponds
to the � bit at the end of the unary part� and the other bins occupied by the LPS�

�

�

�

�

�

�

�

�

�

�

�

��

��

� �

�

�Bin count b

Codeword c�

���

����

�����

������
�������

� �
 � � � �

Codeword C

Bin count b

Figure �
 Two views of the mapping between bin counts and codewords� Top
 the
codeword space chopped up and assigned to bins and slots� assumingm � �� Bottom

codeword as a function of bin count� The light curve is the function using exact
arithmetic coding� C � ��
�b�

object correspond to the bits in the binary part of the Golomb code�

Interpretation of code stream� Now we consider the coded bitstream as a function of
the number of bins �lled with MPS�objects� We denote the bin count� a real number
in the general case� by b� At the end of a run of r MPS�objects� b � r�m� If we put
a binary point in front of the stream of output bits� the result is a number in ��� ���
The beginning of this number is a codeword for the number of bins occupied by the
�rst run of MPS�objects �or equivalently� for the length of that run�� It turns out
that the codeword is de�ned by the following piecewise linear function� in which fbg
denotes the fractional part of the bin count b

C�b� �
�
��

�

bbc

�
�

fbg

��bbc
� ��

� fbg

��bbc
� ���

This mapping is shown two di�erent ways in Figure �� The �rst term in the middle
expression is the code for the number of full bins� the other term is the code for the
fraction of the partially �lled bin that is �lled� If we de�ne the codeword function
in terms of the run length r to be cm�r� � C�r�m�� then we have a formula for the
Golomb code with parameter m�

The decoder will interpret any code stream in �cm�r�� cm�r���� as beginning with
a run of length exactly r� The less signi�cant trailing bits of this range are used to
decode the remaining runs� To allow this� we must transform the range and the code
point so that the range represents a collection of possible bin counts� that is� a range
of the form �C�b�� C����� We do this by translating the range and code point upward
to the high end of ��� ��� The translated code point� when interpreted as a bin count�
correctly includes the bins occupied by the LPS�object�

�

Coding algorithm� To be more precise� we now recast the coding process in terms
of coding variables� These variables are typically stored in registers� but for now we
treat them as real numbers� As we begin the coding� we do not know the length of
the �rst run� it could be any integer in the range ������ so the codeword could be
any value in the range �cm���� cm����� We give the name C to the code point� that is�
the value of the code stream interpreted as a number in ��� ��� We give the name A
to the current low point of the range of possible codewords� initially A � cm��� � ��
The high point of the range is cm��� � ��

After we have put k MPS�objects into bins� the range of possible codewords is
�cm�k�� cm����� so A � cm�k�� If the next object were an LPS�object that termi�
nates the run of MPS�objects� the codeword would be known to be in the range
�cm�k�� cm�k � ���� If the next object were an MPS�object that continues the run of
MPS�objects� the new range would be �cm�k���� cm����� We give the name Z to the
split point cm�k � ��� The decoder will interpret a value of C � �A�Z� as indicating
that length of the �rst run was exactly k� while a value of C � �Z� �� means that the
length of the �rst run was more than k�

After coding the �rst run� we would like to put the coder back into the state in
which the range of possible code words is of the form �A�� ��� To do so we simply shift
the range and the code point upward by � � Z� so the code point is C � � � Z and
the range is �A � �� Z� ��� which is of the proper form� In the Golomb code this is
easy� involving a simple �xed precision addition�

Finally we renormalize the range by repeatedly moving A and C to the left�
doubling the size of the range at each step� In the Golomb code this is implemented
by a sequence of bit shifting operations� Eventually this process makes the range
��� ��� and the code point C is adjusted properly� Renormalization is not necessary
for the theory� but when we recognize that we have extracted all the information from
the leading bits� we can discard them and use the space they occupied in the machine
registers� Hence runs of arbitrary length can be coded using �log�m��bit registers�

Here is pseudocode for decoding one bit� assuming that � � ��m� A is initially ��
and C is set to the full coded bitstream

Golomb decoder
G�� Z
� A��� increment based on slot size
G�� if �C � Z� f bit
� MPS� A
� Z� g deal with MPS
G�� else f bit
� LPS� A
� A � �� Z� C
� C � �� Z� g deal with LPS
G�� while �A � ���� f A
�
�A� ����� C
�
�C � ����� g renormalize

Why Golomb coding is easy� When considered in these terms� Golomb coding is easy
for three reasons� First� all the MPS�objects are forced to be the same size� the slot
size� and that size is a divisor of the bin size� so no MPS�object ever straddles a bin
boundary� Hence cm�k� and cm�k��� are always in the same segment of the piecewise
linear function de�ned by Equation ���� During the coding of a single symbol� the low
point A never moves along two di�erent slopes of the bin�count�to�codeword curve of
Figure �� so no special non�linear processing is needed to handle this case� Second�
because � � Z is always a multiple of a power of
� we do not have to deal with
arithmetic carries when doing the upward shift of A and C by � � Z� �xed�point

�

addition su�ces� Third� because Z � A is always a power of
� the upward shift
leaves A on a bin boundary� Each renormalization step discards one bit from the
code stream� and reduces the full bin count by �� Eventually the range becomes ��� ��
�and the corresponding bin count becomes �� as we are about to start coding a new
run� These conditions can be made to hold even for Golomb codes in which m is not
a power of
� but that is outside the scope of this paper�

Limitations of Golomb codes� Golomb codes� while easy to understand and imple�
ment and fast in operation� have limitations� A general data compression system has
to be able to deal with arbitrary sequences of events with di�erent probabilities�� But
in a Golomb code the parameter m is �xed� and the slot size � � ��m is appropriate
only for a single event probability�

In fact we can change the value of the slot size � for each event to be encoded�
but in doing so we may violate some of the assumptions that make Golomb coding
so attractive� First� there may not be enough room in the current partially �lled bin
to accommodate a slot of size �� since � can take any value up to �� This is not a
problem when counting bins� but because of the non�linearity in the mapping between
bin counts and codewords given by Equation ���� line G� � of the pseudocode above
is no longer su�cient to compute the value of the split point Z�

Second� when an LPS�object is encountered� � � Z need not be a multiple of a
power of
� Hence we can no longer say that �xed precision addition is su�cient to
implement the upward shift of A and C by ��Z� It is also true that after the upward
shift� A may not be on a bin boundary� but this is not a serious problem�

The Z�Coder as enhanced Golomb coding� The Z�Coder is the same as Golomb
coding with an enhancement to permit use of any arbitrary slot size � not exceeding
one bin� The idea is that if the desired next slot would span a bin boundary� we use
Equation ��� to compute the appropriate value of Z� Within the current bin� the slot
size and increment correspond exactly� but in the over�ow bin� since the codeword
slope is only half as much� the remainder of the slot adds only half as much to the
increment� In symbols� Z�A � �����A�� ��� �����A���
� or Z � �A����
� ����
Hence we add line �a to the pseudocode for the Golomb decoder

Decoder for Z�Coder
Z�� Z
� A��� increment based on MPS size
Z��a if �Z � ���� f Z
� Z�
 � ����g adjust for bin overlap
Z�� if �C � Z� f bit
� MPS� A
� Z� g deal with MPS
Z�� else f bit
� LPS� A
� A� �� Z� C
� C � �� Z� g deal with LPS
Z�� while �A � ���� f A
�
�A� ����� C
�
�C � ����� g renormalize

This method of dealing with bin overlap is essentially the same as the �over�half
processing	 presented by Ono et al� ��� in the Arithmetic Melcode� It is a much more
accurate and more principled approximation of proportional interval division than

�It is possible to use a di�erent Golomb parameter after each renormalization� that is� after each
code bit� but this is not frequent enough for maximum compression e�ciency� It is also possible to
interleave Golomb codes with di�erent parameters in the same code stream� as in Block Melcode 	�
�
but this increases encoding latency and coder complexity�

�

the �conditional exchange	 used in the QM�Coder�

Engineering the Z�Coder for decoding speed� In the Z�Coder one case� that of an
MPS with no need for renormalization or bin overlap adjustment� is typically the
most frequent� it is also fast� involving just one addition and one assignment� By
introducing a new variable F �the fence� and rearranging the computation� we can
ensure that only one comparison is needed in this path� making it truly a �fast path	�
faster than that of the Q�Coder or QM�Coder� This optimization is possible in the
Z�Coder because all the conditions that cause a departure from the �fast path	 are
in the same comparison direction�

Fast decoder for Z�Coder
FZ�� Z
� A ��� increment based on MPS size
FZ�� if �Z � F � f A
� Z� bit
� MPS� g fast MPS path
FZ�� else f
FZ�� if �Z � ���� f Z
� Z�
 � ����g adjust for bin overlap
FZ�� if �C � Z� f bit
� MPS� A
� Z� g deal with MPS
FZ�� else f bit
� LPS� A
� A� �� Z� C
� C � �� Z� g deal with LPS
FZ�
 while �A � ���� f A
�
�A� ����� C
�
�C � ����� g renormalize
FZ�� F
� min�C� ����� g new fence

The variables will all be treated as �xed�point numbers stored in �xed�length
registers� Further optimizations are possible� such as unrolling code to reveal de�
terministic comparisons� replacing multiplications and divisions by shifts� and never
storing the value of Z into main memory�

Encoding� The code for the encoder is similar to that of the decoder� it includes
carry control by counting as in ���

Encoder for Z�Coder
ZE�� Z
� A��� increment based on slot size
ZE�� if �bit � MPS� f deal with MPS
ZE�� if �Z � ���� f A
� Z� return� g fast path MPS
ZE�� else f A
� ��� � Z�
gg� adjust for bin overlap
ZE�� else f deal with LPS
ZE�� if �Z � ���� f Z
� Z�
 � ���� g adjust for bin overlap
ZE�
 C
� C � �� Z� A
� C � �� Z� g shift to top of unit interval
ZE�� while �A � ���� f
ZE�� emit bit� output bit �includes carry control by counting�
ZE��� A
�
�A� ����� C
�
�C � ����� g renormalize

� Probability estimation

Coding a binary event is always conditioned on a state in the model of the data� called
the context of the event� For each context we maintain three pieces of information
about the probabilities of the two possible symbols
 the value of the LPS �� or ��� the
probability pLPS of the LPS� and the con�dence that we have in our estimate� �We
obviously could use MPS values instead of LPS values if it were convenient to do so��

�

For storage e�ciency in hardware implementations� we store all of this information
in an ��bit integer� Since it is used as an index into the probability estimation table�
we call it the index of the context�

When an event is encoded or decoded� we already know its context� We use the
index k of the context to retrieve the value of the increment �k from the probability
estimation table� This value is used as � in the coding process�

After coding an event� we may update the value of the context�s index� adjusting
our probability estimate based on the event just coded� In the Z�Coder� when an
LPS occurs we always update the index� but when an MPS occurs we update the
index with a probability that depends on the index� Thus� whether we adapt after
an MPS depends on the value of a random quantity� Rather than using computa�
tional resources to obtain a random number using a regular pseudo�random�number
generator� we use a more�or�less random quantity already present in the coder� In
the Z�Coder we use the value of Z� and we do an MPS adaptation when Z � 	k� The
probability of adaptation for a given index is adjusted through the threshold 	k� Note
that 	k � ���� so MPS adaptation occurs behind the fence and does not interfere with
the speed of the �fast path�	

Design of the probability estimation table involves several steps
 determining a
quantized set of probabilities and con�dence levels� computing the increment �k for
each probability� determining the next index after an LPS adaptation� and simulta�
neously computing both the threshold for MPS adaptation and the next index after
an MPS adaptation� We would like to change the estimated probability for a context
rapidly at �rst� then less rapidly once the probability has become established� Table
design is usually done empirically� but here we provide a more principled approach
to the problem�

Choosing table entries� In the Z�Coder the probability estimation table is divided
into two parts� The early adaptation part is used when we have seen few events
and hence have little con�dence in our probability estimate� The steady state part
re�ects more con�dence in our estimate� The probability estimate for a context will
pass through the early adaptation part as successive events are coded� eventually it
will reach an index in the steady state part� From there we may adjust the probability
estimate� but it will remain in the steady state part of the table� �It may be useful to
allow a return to the early adaptation part� but we do not yet do so in the Z�Coder��

Steady state entries� About one third of the table is reserved for steady state en�
tries� The probabilities are selected starting at ���� Each successive probability is
chosen as far away from the previous one as possible� but constrained so that either
the absolute or the relative compression ine�ciency is less than a threshold� The rel�
ative ine�ciency criterion a�ects probabilities near ���� the absolute criterion a�ects
skewed probabilities� The thresholds control the number of steady state entries in the
table� In the Z�Coder we use �� steady state probabilities� resulting in a practically
insigni�cant maximum coding ine�ciency of ������ code bit per message bit�

Early adaptation entries� The early adaptation part of the table is constructed by
growing a tree� Each tree node corresponds to an �n�� n�� pair� n� and n� being the

number of �s and �s seen so far in the context� For a given node the probability of
seeing a � is �n� �
���n� � n� �

�� The value of
 can be adjusted to re�ect an a
priori estimate of the distribution of context probabilities and to in�uence the speed
of adaptation

 � � corresponds to Laplace�s prior�
 � ��� to Je�reys� prior� and

 � � to Haldane�s prior� In the Z�Coder we �nd that
 � ��� works well�

We start with the ��� �� node� a leaf� Thereafter� some nodes are leaves� and
others have two children� An LPS child corresponds to the node resulting from the
adaptation that follows an LPS event� an MPS child corresponds to the node resulting
from an MPS adaptation� which on average follows more than one MPS event�

At each step we construct both children of one node and add them to the tree� To
select the pair to be added� we compute the potential child pair of each leaf� From
among the pairs� we choose the one whose probabilities are farthest apart� in the
sense of having the most steady state probability quantization levels between them�
We continue to grow the tree in this greedy manner until the MPS�child�to�LPS�child
probability�quantization�level di�erence is ��

Optimal increment� We derive an expression for the optimal value of the increment
� as a function of the symbol probability distribution pLPS� Consider a theoretical
experiment consisting of decoding a random string of independent random bits with
p	 � p� � ��� using a given value � for the increment� then computing pLPS in the
decoded symbol string� We assume that random variable A is uniformly distributed
in ��� ����� regardless of previous decoding actions� This assumption is supported by
empirical evidence when the greatest common divisor of the increment � and the
interval size �the representation of ��� in a register� is small� By the nature of the
code stream in the experiment� random variable C is uniformly distributed in �A� ���
The assumption about the distribution of A eliminates the dependencies between
consecutive decoded symbols� This is realistic
 practical applications tend to mix
many streams of symbols with di�erent probabilities into the same arithmetic coder�
e�ciently randomizing A and C�

Under this assumption� the decoded symbols are independent identically dis�
tributed random variables� The probability of decoding an LPS can be derived
using the decomposition pLPS � Prob�A � � � ���� � Prob�Z � C j A � � �
���� � Prob�A�� � ���� � Prob�Z � C j A �� � ����� We �nd that

pLPS � �� �� � ���� loge�� � ����� ��� ���� loge
����

implicitly de�ning � as a function of pLPS�
Decoding a random sequence of independent equiprobable bits produces a random

sequence of independent symbols distributed as derived above� Conversely� encod�
ing such a random sequence of symbols under the same assumptions will produce a
random sequence of equiprobable bits� Thus � is the optimal increment when the
probability of the LPS is pLPS�

We have con�rmed this formula by experiments seeking the optimum increment
for chosen symbol probabilities� Encoding a random symbol string with this optimal
increment produces about ���� more code bits than predicted by the entropy� This
appears to be the cost of the additive approximation to the computation of Z�

�

Z�Coder QM�Coder ELS Coder Q�� Coder

File size ��������� �������	� ��
�� ��������� ��
�� ����	��

 ��
��

Encode time �UltraSparc� ���
�� ��	
�� ��
�� ���

� �	
�� ���
�
 ��
��
Decode time �UltraSparc� ���
�� ���

	 ��
�� �	�
�� ���
�� ���
�� ��

��
Encode time �Sparc��� inlined� ��
�
�� �	��
�� ��

�
Decode time �Sparc��� inlined� ����
�	 ����
�� ��
��

Table �
 Comparative results� The �gures are combined results for � binary image
�les� compressed with AT�T�s SPM algorithm� The signed numbers are the per�
centage improvement obtained by using the Z�Coder� � means the Z�Coder is better�
� means the Z�Coder is worse� The total size of the original �les is �� �
������ bytes�

Probability adaptation� In the early adaptation part of the table� the transitions to
new entries after LPS and MPS adaptations are determined by the construction of the
tree� The MPS adaptation threshold 	 is always set to ��� to allow fast adaptation�

In the steady state part of the table� transitions are always between adjacent table
entries� To maintain a state without extra unnecessary transitions� LPS transitions
and MPS transitions should be equally likely in a context with a given symbol prob�
ability� MPS adaptations are controlled by the threshold 	k� The probability of an
MPS adaptation� assuming again that the low point A is a uniform random number
in ��� ����� is Prob�Z � M jZ � ���� � Prob�Z � ���� � pMPS �
�� � � �
	��� � pLPS��
this should equal the probability of an LPS adaptation� namely pLPS� By equating
the two adaptation probabilities� we derive an expression for the threshold

	 �
� ��

�

�

�
�

pLPS
�� pLPS

�

The Z�Coder adaptation algorithm di�ers signi�cantly from the adaptation scheme
introduced by the Q�Coder and used by the QM�Coder� These coders perform an
MPS adaptation whenever encoding or decoding a MPS produces or consumes a
code bit� This is similar to using a constant threshold 	 � ���� An optimally tuned
Q�Coder or QM�Coder therefore produces more MPS adaptation events than LPS

adaptation events� This is compensated for by careful design of asymmetrical state
transition tables� The Z�Coder state tables are free of these constraints� This can be
a signi�cant advantage for creating e�cient state transition tables in an analytically
principled way�

� Experimental results

We have compared the Z�Coder with three other adaptive binary coders� the QM�
Coder� the Q���Coder �a variant of the Q�Coder that uses �� bit registers instead of
�
�bit�� and the Augmented ELS�Coder� based on the ELS�Coder described in ����

In the main test� various coders including the Z�Coder have been incorporated into
the SPM compression system for bilevel images described by Howard �
�� Everything
in the compressed �le is coded using a binary adaptive coder� The binary contexts
included a mixture of skewed and non�skewed probabilities� In tests of compression
ratio against the other coders� the Z�Coder did worse than the ELS�Coder� about

�

the same as the QM�Coder� and better than the Q���Coder� To be fair about it�
the di�erences are all small� in the � percent range� The ELS�Coder seems to track
non�stationary probabilities better than the Z�Coder� not unexpected since in our
current implementation the Z�Coder never leaves the steady state adaptation region
once it gets there� A summary of the results of this experiment� including some timing
�gures� appears in Table �� The Z�Coder is consistently the fastest of the four coders
tested� Detailed results will appear in the full paper�

We also performed two arti�cial tests� In a test of steady state behavior� coding a
long sequence of random bits with �xed probabilities� the Z�Coder performed about
as well as the QM�Coder� better than the Q���Coder� and much better than the ELS�
Coder� In a test of early adaptation� coding a long sequence of random bits with �xed
probabilities but reinitializing the encoder index every �� output bits� the Z�Coder
did better than the QM�Coder� which was better than the Q���Coder� which in turn
was better than the ELS�Coder�

� Conclusion

The Z�Coder is a binary statistical coder that can be used wherever adaptive �or non�
adaptive� entropy coding of binary symbols is required� Its compression performance
is better than that of existing arithmetic coders� Because of its derivation as a
generalization of the Golomb coder� it is also extremely fast� and by our derivation
we have given a uni�ed treatment of run�length coding and approximate arithmetic
coding� In addition� the Z�Coder�s probability estimation is more �exible and faster
than that of other arithmetic coders�

References

��� S� W� Golomb� �Run�Length Encodings	� IEEE Trans� Inform� Theory IT��
 �July
� ���� � �����

�
� P� G� Howard� �Text Image Compression Using Soft Pattern Matching	� Computer

Journal �� �� ���

��� JBIG� �Progressive Bi�level Image Compression	� International Standard ISO!IEC
������ ITU�T Recommendation T��
� � ��

��� F� Ono� S� Kino� M� Yoshida � T� Kimura� �Bi�level image coding with Melcode
� Comparison of block type code and arithmetic type code	� Proc� IEEE Global
Telecommunications Conference� Nov� � � �

��� W� B� Pennebaker� J� L� Mitchell� G� G� Langdon � R� B� Arps� �An Overview of
the Basic Principles of the Q�Coder Adaptive Binary Arithmetic Coder	� IBM J�

Res� Develop� �
 �Nov� � ���� �����
��

��� W� D� Withers� �The ELS�coder
 A Rapid Entropy Coder� 	� in Proc� Data Com�

pression Conference� J� A� Storer � M� Cohn� eds�� Snowbird� Utah� Mar�
��
��
� �� ����

��� I� H� Witten� R� M� Neal � J� G� Cleary� �Arithmetic Coding for Data Compres�
sion	� Comm� ACM �� �June � ���� �
������

��

