THE Z-CODER ADAPTIVE BINARY CODER
(extended abstract)

Léon Bottou®, Paul G. Howard®, and Yoshua Bengio®™
AAT&T Labs — Research, Red Bank NJ 07701 — 7033
MUniversité de Montréal, Montréal PQ Canada H3C 3J7

ABSTRACT

We present the Z-Coder, a new adaptive data compression coder for coding
binary data. The Z-Coder is derived from the Golomb run-length coder, and
retains most of the speed and simplicity of the earlier coder. The Z-Coder
can also be thought of as a multiplication-free approximate arithmetic coder,
showing the close relationship between run-length coding and arithmetic cod-
ing. The Z-Coder improves upon existing arithmetic coders by its speed and
its principled design. In this paper we present a derivation of the Z-Coder as
well as details of the construction of its adaptive probability estimation table.

1 Introduction

Statistical compressors operate by reducing data to a sequence of discrete “events.”
Each event that must be coded is drawn from a set of possible events, each having
a probability associated with it. The major issues involved in designing a statistical
compressor are modeling: mapping the data to a probabilistic model by choosing a
set, of possible contexts; probability estimation: estimating the probabilities asso-
ciated with each possible event in each context; and coding: converting the actual
events to bits in the codestream in a way that allows a decoder to recover the orig-
inal sequence of events. Probability estimation is properly part of modeling, but in
data compression work it is usually kept separate, or even coupled to coding. The
goal of any data compression system is to minimize the number of bits required to
represent the data while at the same time attempting to satisfy a number of prac-
tical constraints. Some of the more important considerations besides compression
efficiency are encoding and decoding speed and latency, ease of implementation in
software, hardware, or both, efficient use of memory, and freedom from intellectual
property restrictions. In this paper we present a new adaptive binary coder named
the Z-Coder. Besides providing close to theoretically optimal compression efficiency,
it scores well on the secondary issues.

In Section 2 we develop the Z-Coder as a generalization of the Golomb coder [1],
a simple, effective, and popular run-length coder. To do so we first provide a careful
and detailed explanation of the Golomb coder, casting it in the terms used in our
description of the Z-Coder. We show why the Golomb coder is so fast and easy
to implement, but we also show how its compression efficiency might be improved.
Then we make relatively minor adjustments to the Golomb coder to arrive at the
Z-Coder; the Z-Coder retains the most useful properties of the Golomb coder, speed
and simplicity.

The Z-Coder can also be seen to be similar to the Q-Coder [5] and QM-Coder [3]
approximate arithmetic coders, in that it is a multiplication-free binary coder with in-
cremental output and adaptive probability estimation coupled to the coding process;
like the other coders in this class, it does not directly address modeling. Like them,
it uses tables for its adaptive probability estimation, as we describe in Section 3.
However, the Z-Coder improves on the Q-Coder and its descendents in a number of
ways: 1) a better approximation for proportional interval division; 2) a very fast “fast
path”; 3) a principled approach to increment computation in the probability estima-
tion tables; and 4) a principled approach to fast early adaptation in the probability
estimation tables.

2 Development of the Z-Coder

Golomb coding. The Z-Coder is a generalization of Golomb coding, a method of
coding runs of binary symbols. We consider the Golomb code with parameter m;
in this discussion the parameter is taken to be a power of 2, although with minor
adjustments it may take on any positive integer value. We use a Golomb code to
code a run of r consecutive occurrences of a more probable symbol (MPS) followed
by a single occurrence of a less probable symbol (LPS). The codeword for such a run
has two parts. The first part is the value of [r/m] coded as a unary number, that
is, |r/m]| 1s followed by a 0. The second part is the value of r (modm), coded as
an ordinary (log, m)-bit binary number. Successive runs are coded exactly the same
way.

Bin filling. We can think of Golomb encoding as an exercise in filling bins. Imagine
that we have a conveyor belt supplying small objects, called MPS-objects, each of
approximately the same size. Runs of MPS-objects are occasionally interrupted by a
large object, called an LPS-object. At a given point in time, the conveyor belt will
supply either an MPS-object of size —log, pmps, which is smaller than the size of a
bin, or an LPS-object of size —log,(1 — pmps), which is larger than the size of a bin.
We may interpret puyps as the probability that the object is an MPS-object, although
the probability is no longer relevant after we have fixed the Golomb parameter m.

We are trying to code the number of MPS-objects in each run. We have bins that
can hold m MPS-objects each; each bin has m slots, each of size A = 1/m, and the
MPS-objects can be forced to expand or contract to exactly fill the slots.

We start filling bins with MPS-objects. When a bin is full, we output 1; it is no
longer necessary to consider that bin. When an LPS-object appears, we output O,
and then output a (log, m)-bit binary number to indicate how many MPS-objects
were in the last partially filled bin. The LPS-object fills the remainder of that bin as
well as log, m other entire bins. The initial choice of the value of m determines both
the number of MPS-objects that can fit into one bin and the number of bins required
for an LPS-object.

In this interpretation, the bins that are filled with MPS-objects correspond exactly
to the 1 bits in the unary part of the Golomb code. The partially filled bin corresponds
to the O bit at the end of the unary part, and the other bins occupied by the LPS-

Bin count b ? ‘1 ‘2 5‘3 “l fmo
[LI
1 3 7 15 4
Codeword ¢4 1 3 BRI
0.11110 =
0.1110
0.110
Codeword C 0.10
0.0
0 1 2 3 4 5 6

Bin count b

Figure 1: Two views of the mapping between bin counts and codewords. Top: the
codeword space chopped up and assigned to bins and slots, assuming m = 4. Bottom:
codeword as a function of bin count. The light curve is the function using exact
arithmetic coding, C' =1 — 27,

object correspond to the bits in the binary part of the Golomb code.

Interpretation of code stream. Now we consider the coded bitstream as a function of
the number of bins filled with MPS-objects. We denote the bin count, a real number
in the general case, by b. At the end of a run of » MPS-objects, b = r/m. If we put
a binary point in front of the stream of output bits, the result is a number in [0, 1).
The beginning of this number is a codeword for the number of bins occupied by the
first run of MPS-objects (or equivalently, for the length of that run). It turns out
that the codeword is defined by the following piecewise linear function, in which {b}
denotes the fractional part of the bin count b:
1 {b} 2 — {b}
C®) = (1= 557) + 357 = 1~ Srrbr (1)

This mapping is shown two different ways in Figure 1. The first term in the middle
expression is the code for the number of full bins; the other term is the code for the
fraction of the partially filled bin that is filled. If we define the codeword function
in terms of the run length r to be ¢,,(r) = C(r/m), then we have a formula for the
Golomb code with parameter m.

The decoder will interpret any code stream in [¢,,(7), ¢, (r +1)) as beginning with
a run of length exactly r. The less significant trailing bits of this range are used to
decode the remaining runs. To allow this, we must transform the range and the code
point so that the range represents a collection of possible bin counts, that is, a range
of the form [C(b), C'(c0)). We do this by translating the range and code point upward
to the high end of [0,1). The translated code point, when interpreted as a bin count,
correctly includes the bins occupied by the LPS-object.

Coding algorithm. To be more precise, we now recast the coding process in terms
of coding variables. These variables are typically stored in registers, but for now we
treat them as real numbers. As we begin the coding, we do not know the length of
the first run; it could be any integer in the range [0,00), so the codeword could be
any value in the range [¢;,(0), ¢,y (00)). We give the name C' to the code point, that is,
the value of the code stream interpreted as a number in [0,1). We give the name A
to the current low point of the range of possible codewords; initially A = ¢,,(0) = 0.
The high point of the range is ¢,,(c0) = 1.

After we have put k& MPS-objects into bins, the range of possible codewords is
[Cm(k), em(00)), s0 A = ¢p(k). If the next object were an LPS-object that termi-
nates the run of MPS-objects, the codeword would be known to be in the range
[em(k), cm(k + 1)). If the next object were an MPS-object that continues the run of
MPS-objects, the new range would be [¢,, (k4 1), ¢;n(00)). We give the name Z to the
split point ¢y, (k + 1). The decoder will interpret a value of C' € [A, Z) as indicating
that length of the first run was exactly k, while a value of C' € [Z, 1) means that the
length of the first run was more than k.

After coding the first run, we would like to put the coder back into the state in
which the range of possible code words is of the form [A’,1). To do so we simply shift
the range and the code point upward by 1 — Z, so the code point is C'+ 1 — Z and
the range is [A 4+ 1 — Z, 1), which is of the proper form. In the Golomb code this is
easy, involving a simple fixed precision addition.

Finally we renormalize the range by repeatedly moving A and C to the left,
doubling the size of the range at each step. In the Golomb code this is implemented
by a sequence of bit shifting operations. Eventually this process makes the range
[0,1), and the code point C' is adjusted properly. Renormalization is not necessary
for the theory, but when we recognize that we have extracted all the information from
the leading bits, we can discard them and use the space they occupied in the machine
registers. Hence runs of arbitrary length can be coded using (log, m)-bit registers.

Here is pseudocode for decoding one bit, assuming that A = 1/m, A is initially 0,
and C' is set to the full coded bitstream:

Golomb decoder

G-1 Z:=A+A; increment based on slot size
G-2 if (C > Z) { bit := MPS; A:=Z7; } deal with MPS
G-3 else { bit:=LPS; A:=A+1-27;C:=C+1-27;} deal with LPS
G-4 while (A>1Y) { A:=2(A-1Y%); C:=2(C—-1Y);} renormalize

Why Golomb coding is easy. When considered in these terms, Golomb coding is easy
for three reasons. First, all the MPS-objects are forced to be the same size, the slot
size, and that size is a divisor of the bin size, so no MPS-object ever straddles a bin
boundary. Hence ¢,,(k) and ¢,,(k+1) are always in the same segment of the piecewise
linear function defined by Equation (1). During the coding of a single symbol, the low
point A never moves along two different slopes of the bin-count-to-codeword curve of
Figure 1, so no special non-linear processing is needed to handle this case. Second,
because 1 — 7 is always a multiple of a power of 2, we do not have to deal with
arithmetic carries when doing the upward shift of A and C' by 1 — Z; fixed-point

addition suffices. Third, because Z — A is always a power of 2, the upward shift
leaves A on a bin boundary. Each renormalization step discards one bit from the
code stream, and reduces the full bin count by 1. Eventually the range becomes [0, 1)
(and the corresponding bin count becomes 0) as we are about to start coding a new
run. These conditions can be made to hold even for Golomb codes in which m is not
a power of 2, but that is outside the scope of this paper.

Limitations of Golomb codes. Golomb codes, while easy to understand and imple-
ment and fast in operation, have limitations. A general data compression system has
to be able to deal with arbitrary sequences of events with different probabilities’. But
in a Golomb code the parameter m is fixed, and the slot size A = 1/m is appropriate
only for a single event probability.

In fact we can change the value of the slot size A for each event to be encoded,
but in doing so we may violate some of the assumptions that make Golomb coding
so attractive. First, there may not be enough room in the current partially filled bin
to accommodate a slot of size A, since A can take any value up to 1. This is not a
problem when counting bins, but because of the non-linearity in the mapping between
bin counts and codewords given by Equation (1), line G—1 of the pseudocode above
is no longer sufficient to compute the value of the split point Z.

Second, when an LPS-object is encountered, 1 — Z need not be a multiple of a
power of 2. Hence we can no longer say that fixed precision addition is sufficient to
implement the upward shift of A and C' by 1 —Z. It is also true that after the upward
shift, A may not be on a bin boundary, but this is not a serious problem.

The Z-Coder as enhanced Golomb coding. The Z-Coder is the same as Golomb
coding with an enhancement to permit use of any arbitrary slot size A not exceeding
one bin. The idea is that if the desired next slot would span a bin boundary, we use
Equation (1) to compute the appropriate value of Z. Within the current bin, the slot
size and increment correspond exactly, but in the overflow bin, since the codeword
slope is only half as much, the remainder of the slot adds only half as much to the
increment. In symbols, Z —A = (Yo —A)+ (A — (% —A))/2,0or Z = (A+A)/2+Y,.
Hence we add line 1a to the pseudocode for the Golomb decoder:
Decoder for Z-Coder

-1 7 :=A4+ A increment based on MPS size
Z-1a f (Z>){Z:=Z/24+Y;} adjust for bin overlap
z-2 if (C > Z) { bit:= MPS; A:=Z7; } deal with MPS
Z-3 else { bit:=LPS; A:=A+1-7;,C:=C+1—-27;} deal with LPS
Z-4 while (A>Y) { A:=2A4-1); C:=2(C—-1Y%);} renormalize

This method of dealing with bin overlap is essentially the same as the “over-half
processing” presented by Ono et al. [4] in the Arithmetic Melcode. It is a much more
accurate and more principled approximation of proportional interval division than

Tt is possible to use a different Golomb parameter after each renormalization, that is, after each
code bit, but this is not frequent enough for maximum compression efficiency. It is also possible to
interleave Golomb codes with different parameters in the same code stream, as in Block Melcode [4],
but this increases encoding latency and coder complexity.

the “conditional exchange” used in the QM-Coder.

Engineering the Z-Coder for decoding speed. In the Z-Coder one case, that of an
MPS with no need for renormalization or bin overlap adjustment, is typically the
most frequent; it is also fast, involving just one addition and one assignment. By
introducing a new variable F' (the fence) and rearranging the computation, we can
ensure that only one comparison is needed in this path, making it truly a “fast path”,
faster than that of the Q-Coder or QM-Coder. This optimization is possible in the
Z-Coder because all the conditions that cause a departure from the “fast path” are
in the same comparison direction.

Fast decoder for Z-Coder

FZ-1 Z:= A+ A; increment based on MPS size
Fz-2 if (Z < F){ A:= Z; bit := MPS; } fast MPS path
FZ-3 else {

Fz—-4 M (Z>Y){Z:=2Z/2+Y;} adjust for bin overlap
FZ—5 if (C > Z) { bit :=MPS; A:=7; } deal with MPS
FZ—6 else { bit:=LPS; A:=A+1-27;C:=C+1-27;} deal with LPS
FZ-7 while (A>1) { A:=2(A-Y%); C:=2(C—-1Y%); } renormalize
FZ—-8 F:=min(C,%); } new fence

The variables will all be treated as fixed-point numbers stored in fixed-length
registers. Further optimizations are possible, such as unrolling code to reveal de-
terministic comparisons, replacing multiplications and divisions by shifts, and never
storing the value of Z into main memory.

Encoding. The code for the encoder is similar to that of the decoder; it includes
carry control by counting as in [7]:

Encoder for Z-Coder

ZE-1 7 := A+ A; increment based on slot size
ZE—-2 if (bit = MPS) { deal with MPS
ZE-3 if (7 <%) { A:=Z; return; } fast path MPS
ZE—4 else { A:=1Y,+ Z/2}}; adjust for bin overlap
ZE-5 else { deal with LPS
ZE—6 if(Z>W{Z2:=2/2+Y;} adjust for bin overlap

ZE-7 C:=C+1—-Z;A:=C+1—7Z;} shift to top of unit interval
ZE-8 while (4 > Y,) {

ZE—-9 emit bit; output bit (includes carry control by counting)
ZE-10 A:=2A4A-Y); C:=2(C—-1%);} renormalize

3 Probability estimation

Coding a binary event is always conditioned on a state in the model of the data, called
the context of the event. For each context we maintain three pieces of information
about the probabilities of the two possible symbols: the value of the LPS (0 or 1), the
probability p ps of the LPS, and the confidence that we have in our estimate. (We
obviously could use MPS values instead of LPS values if it were convenient to do so.)

For storage efficiency in hardware implementations, we store all of this information
in an 8-bit integer. Since it is used as an index into the probability estimation table,
we call it the indez of the context.

When an event is encoded or decoded, we already know its context. We use the
index k of the context to retrieve the value of the increment A, from the probability
estimation table. This value is used as A in the coding process.

After coding an event, we may update the value of the context’s index, adjusting
our probability estimate based on the event just coded. In the Z-Coder, when an
LPS occurs we always update the index, but when an MPS occurs we update the
index with a probability that depends on the index. Thus, whether we adapt after
an MPS depends on the value of a random quantity. Rather than using computa-
tional resources to obtain a random number using a regular pseudo-random-number
generator, we use a more-or-less random quantity already present in the coder. In
the Z-Coder we use the value of Z, and we do an MPS adaptation when Z > 0. The
probability of adaptation for a given index is adjusted through the threshold ;. Note
that 6, > Y, so MPS adaptation occurs behind the fence and does not interfere with
the speed of the “fast path.”

Design of the probability estimation table involves several steps: determining a
quantized set of probabilities and confidence levels, computing the increment Ay for
each probability, determining the next index after an LPS adaptation, and simulta-
neously computing both the threshold for MPS adaptation and the next index after
an MPS adaptation. We would like to change the estimated probability for a context
rapidly at first, then less rapidly once the probability has become established. Table
design is usually done empirically, but here we provide a more principled approach
to the problem.

Choosing table entries. In the Z-Coder the probability estimation table is divided
into two parts. The early adaptation part is used when we have seen few events
and hence have little confidence in our probability estimate. The steady state part
reflects more confidence in our estimate. The probability estimate for a context will
pass through the early adaptation part as successive events are coded; eventually it
will reach an index in the steady state part. From there we may adjust the probability
estimate, but it will remain in the steady state part of the table. (It may be useful to
allow a return to the early adaptation part, but we do not yet do so in the Z-Coder.)

Steady state entries. About one third of the table is reserved for steady state en-
tries. The probabilities are selected starting at 0.5. Each successive probability is
chosen as far away from the previous one as possible, but constrained so that either
the absolute or the relative compression inefficiency is less than a threshold. The rel-
ative inefficiency criterion affects probabilities near ,; the absolute criterion affects
skewed probabilities. The thresholds control the number of steady state entries in the
table. In the Z-Coder we use 78 steady state probabilities, resulting in a practically
insignificant maximum coding inefficiency of 0.0003 code bit per message bit.

Early adaptation entries. The early adaptation part of the table is constructed by
growing a tree. Each tree node corresponds to an (ng,ny) pair, ng and n; being the

number of Os and 1s seen so far in the context. For a given node the probability of
seeing a 1 is (ny + €)/(ng + n1 + 2¢). The value of € can be adjusted to reflect an a
priori estimate of the distribution of context probabilities and to influence the speed
of adaptation: € = 1 corresponds to Laplace’s prior, ¢ = 1, to Jeffreys’ prior, and
e = 0 to Haldane’s prior. In the Z-Coder we find that € = Y, works well.

We start with the (0,0) node, a leaf. Thereafter, some nodes are leaves, and
others have two children. An LPS child corresponds to the node resulting from the
adaptation that follows an LPS event; an MPS child corresponds to the node resulting
from an MPS adaptation, which on average follows more than one MPS event.

At each step we construct both children of one node and add them to the tree. To
select the pair to be added, we compute the potential child pair of each leaf. From
among the pairs, we choose the one whose probabilities are farthest apart, in the
sense of having the most steady state probability quantization levels between them.
We continue to grow the tree in this greedy manner until the MPS-child-to-LPS-child
probability-quantization-level difference is 1.

Optimal increment. We derive an expression for the optimal value of the increment
A as a function of the symbol probability distribution p ps. Consider a theoretical
experiment consisting of decoding a random string of independent random bits with
po = p1 = ', using a given value A for the increment, then computing p ps in the
decoded symbol string. We assume that random variable A is uniformly distributed
in [0,1,), regardless of previous decoding actions. This assumption is supported by
empirical evidence when the greatest common divisor of the increment A and the
interval size (the representation of !/, in a register) is small. By the nature of the
code stream in the experiment, random variable C' is uniformly distributed in [A, 1).
The assumption about the distribution of A eliminates the dependencies between
consecutive decoded symbols. This is realistic: practical applications tend to mix
many streams of symbols with different probabilities into the same arithmetic coder,
efficiently randomizing A and C.

Under this assumption, the decoded symbols are independent identically dis-
tributed random variables. The probability of decoding an LPS can be derived
using the decomposition pips = Prob(A + A < Y,)-Prob(Z > C | A+ A <
Y,) + Prob(A+ A > %) -Prob(Z > C | A+ A >1,). We find that

pes = A — (A +) log, (A + %) — (A =) log, Y,

implicitly defining A as a function of pips.

Decoding a random sequence of independent equiprobable bits produces a random
sequence of independent symbols distributed as derived above. Conversely, encod-
ing such a random sequence of symbols under the same assumptions will produce a
random sequence of equiprobable bits. Thus A is the optimal increment when the
probability of the LPS is pips.

We have confirmed this formula by experiments seeking the optimum increment
for chosen symbol probabilities. Encoding a random symbol string with this optimal
increment produces about 0.5% more code bits than predicted by the entropy. This
appears to be the cost of the additive approximation to the computation of 7.

Z-Coder QM-Coder ELS Coder Q15 Coder

File size 3,262,334 3,265,082 +0.1% 3,247,700 —05% 3,2718599 +0.5%
Encode time (UltraSparc) 411.20 43831 +6.6% 446.90 +8.7% 43059 +4.7%
Decode time (UltraSparc) 334.73 34298 +25% 385.21 +15.1% 43271 +29.3%
Encode time (Sparc10, inlined) 1693.77 181032 +6.9%
Decode time (Sparcl10, inlined) 1451.38 1530.34 +5.4%

Table 1: Comparative results. The figures are combined results for 96 binary image
files, compressed with AT&T’s SPM algorithm. The signed numbers are the per-
centage improvement obtained by using the Z-Coder. + means the Z-Coder is better,
— means the Z-Coder is worse. The total size of the original files is 189,268,488 bytes.

Probability adaptation. In the early adaptation part of the table, the transitions to
new entries after LPS and MPS adaptations are determined by the construction of the
tree. The MPS adaptation threshold # is always set to !/, to allow fast adaptation.

In the steady state part of the table, transitions are always between adjacent table
entries. To maintain a state without extra unnecessary transitions, LPS transitions
and MPS transitions should be equally likely in a context with a given symbol prob-
ability. MPS adaptations are controlled by the threshold 6,. The probability of an
MPS adaptation, assuming again that the low point A is a uniform random number
in [0,1), is Prob(Z > M|Z >) - Prob(Z > Y,) - pmps = 2(1 + A — 20)(1 — prps);
this should equal the probability of an LPS adaptation, namely p ps. By equating
the two adaptation probabilities, we derive an expression for the threshold:

g_ﬂ_l _ _Pips
2 4 1 —prps

The Z-Coder adaptation algorithm differs significantly from the adaptation scheme
introduced by the Q-Coder and used by the QM-Coder. These coders perform an
MPS adaptation whenever encoding or decoding a MPS produces or consumes a
code bit. This is similar to using a constant threshold § = Y%,. An optimally tuned
Q-Coder or QM-Coder therefore produces more MPS adaptation events than LPS
adaptation events. This is compensated for by careful design of asymmetrical state
transition tables. The Z-Coder state tables are free of these constraints. This can be
a significant advantage for creating efficient state transition tables in an analytically
principled way.

4 Experimental results

We have compared the Z-Coder with three other adaptive binary coders, the QM-
Coder, the Q15-Coder (a variant of the Q-Coder that uses 15 bit registers instead of
12-bit), and the Augmented ELS-Coder, based on the ELS-Coder described in [6].
In the main test, various coders including the Z-Coder have been incorporated into
the SPM compression system for bilevel images described by Howard [2]. Everything
in the compressed file is coded using a binary adaptive coder. The binary contexts
included a mixture of skewed and non-skewed probabilities. In tests of compression
ratio against the other coders, the Z-Coder did worse than the ELS-Coder, about

the same as the QM-Coder, and better than the Q15-Coder. To be fair about it,
the differences are all small, in the 1 percent range. The ELS-Coder seems to track
non-stationary probabilities better than the Z-Coder, not unexpected since in our
current implementation the Z-Coder never leaves the steady state adaptation region
once it gets there. A summary of the results of this experiment, including some timing
figures, appears in Table 1. The Z-Coder is consistently the fastest of the four coders
tested. Detailed results will appear in the full paper.

We also performed two artificial tests. In a test of steady state behavior, coding a
long sequence of random bits with fixed probabilities, the Z-Coder performed about
as well as the QM-Coder, better than the Q15-Coder, and much better than the ELS-
Coder. In a test of early adaptation, coding a long sequence of random bits with fixed
probabilities but reinitializing the encoder index every 50 output bits, the Z-Coder
did better than the QM-Coder, which was better than the Q15-Coder, which in turn
was better than the ELS-Coder.

5 Conclusion

The Z-Coder is a binary statistical coder that can be used wherever adaptive (or non-
adaptive) entropy coding of binary symbols is required. Its compression performance
is better than that of existing arithmetic coders. Because of its derivation as a
generalization of the Golomb coder, it is also extremely fast, and by our derivation
we have given a unified treatment of run-length coding and approximate arithmetic
coding. In addition, the Z-Coder’s probability estimation is more flexible and faster
than that of other arithmetic coders.

References

[1] S. W. Golomb, “Run-Length Encodings”, IEEE Trans. Inform. Theory IT-12 (July
1966), 399-401.

[2] P. G. Howard, “Text Image Compression Using Soft Pattern Matching”, Computer
Journal 40 (1997).

3] JBIG, “Progressive Bi-level Image Compression”, International Standard ISO/TEC
11544, ITU-T Recommendation T.82, 1993.

[4] F. Ono, S. Kino, M. Yoshida & T. Kimura, “Bi-level image coding with Melcode
— Comparison of block type code and arithmetic type code”, Proc. IEEE Global
Telecommunications Conference, Nov. 1989.

[5] W. B. Pennebaker, J. L. Mitchell, G. G. Langdon & R. B. Arps, “An Overview of
the Basic Principles of the Q-Coder Adaptive Binary Arithmetic Coder”, IBM J.
Res. Develop. 32 (Nov. 1988), 717-726.

(6] W. D. Withers, “The ELS-coder: A Rapid Entropy Coder. ”, in Proc. Data Com-
pression Conference, J. A. Storer & M. Cohn, eds., Snowbird, Utah, Mar. 25-27,
1997, 475.

(7] 1. H. Witten, R. M. Neal & J. G. Cleary, “Arithmetic Coding for Data Compres-
sion”, Comm. ACM 30 (June 1987), 520-540.

10

